100多年前的1905年是爱因斯坦的“奇迹”之年,这一年他先后发表了3篇具有划时代意义的论文,其中关于光量
A、当入射光的频率低于极限频率,不能发生光电效应.故A错误.
爱因斯坦关于光电效应的论文_爱因斯坦关于光电效应的论文摘要
爱因斯坦关于光电效应的论文_爱因斯坦关于光电效应的论文摘要
B、根据光电效应方程EKm=hγ-W0可知,光电子的初动能与入射光的频率成一次函数关系,不是正比关系.故B错误.
C、光电子的初动能与入射光的强度无关.故C错误.
D、某单色光照射一金属时不能发生光电效应,改用波长较短的光,根据γ=cλ知频率增大,可能发生光电效应.故D正确.
故选:D.
爱因斯坦的()论文解释了光电效应。
爱因斯坦的()论文解释了光电效应。
A.《热的分子运动论所要求的静止液体中悬浮粒子的运动》
B.《论运动物体的电动力学》
C.《关于光的产生和转变的一个启发性观点》
D.《物体的惯性和它所含的能量有关吗》
正确:C
爱因斯坦光电效应理论有哪些内容?
利用光电效应可以把光信号转变为电信号,动作迅速灵敏,因此利用光电效应制作的光电器件在工农业生产、科学技术和文化生活领域内得到了广泛的应用.光电管就是应用最普遍的一种光电器件.
光电管的类型很多.图7-3甲是其中的一种.玻璃泡里的空气已经抽出,有的管里充有少量的惰性气体(如氩、氖、氦等).管的内半壁涂有逸出功小的碱金属作为阴极K.管内另有一阳极A.使用时照图7-3乙那样把它连在电路里,当光照射到光电管的阴极K时,阴极发射电子,电路里就产生电流.光电管不能受强光照射,否则容易老化失效.光电管产生的电流很弱,应用时可以用放大器把它放大.
光控继电器
工业生产中的大部分光电控制设备都用光控继电器.图7-4是光控继电器的示意图.它由电源、光电管、放大器、电磁继电器几部分组成。当光照射光电管时,光电管电路中便产生电流,经放大器放大后,使电磁铁M磁化,把衔铁N吸住;没有光照射光电管时,电路中没有电流,衔铁N在弹簧的作用下就自动离开M.如果把衔铁N跟控制机构相连,就可以达到自动控制的目的.
光控继电器在工业上可以用于产品的自动计数、安全生产等方面.用于自动计数时,可以把产品放在传送带上,光源和光电管分别放在传送带的两侧,每当传送带上输送过去一个产品时,光线被挡住一次,光控继电器就放开衔铁一次,由衔铁控制的计数器的数字就加一.工人在冲床、钻床、锻压机械上劳动时,如有不慎,容易出.为保证安全,可以在这些机床上安装光控继电器.当工人不慎将手伸入危险部位时,由于遮住了光线,光控继电器就立即动作,使机床停下来,避免的发生.
有声电影
最早的电影是没有声音的.后来虽然有了声音,但那是靠留声机来配合影片播放的.声和影配合不好时,效果当然不好.我们现在能够看到声和影完全配合一致的有声电影,还是多亏了光电管.
影片摄制完后,要进行录音.录音时通过专门的设备使声音的变化转变成光的变化,从而把声音的“像”摄制在影片的边缘上,形成宽窄变化的暗条纹,这就是影片边上的音道.放映电影时,利用光电管把“声音的照片”还原成声音.方法是:在电影放映机中用强度不变的极窄的光束照射音道,由于影片上各处的音道宽窄不同,所以在影片移动的过程中,通过音道的光的强度也就不断变化;变化的光射向光电管时,在电路中产生变化的电流,把电流放大后,通过喇叭就可以把声音放出来
这是光电效应的应用
爱因斯坦光电效应理论内容包括:
爱因斯坦认为在这两个物体之间通过的能量同样像是以光速飞行的量子组成的,这样一来,可见光线以及不可见光线都被定为由彼此的飞过空间的孤立成分组成的。这个理论类似于牛顿的微粒说,但是在量子论中不可见光的部分由于具有较高频率所以就较大,而牛顿的观点是红色微粒大于紫色微粒。
爱因斯坦为了摆脱从麦克斯韦的电学理论和电子论中作出的与观察不符的结论而提出了他的光量子。他提出,一束单色光,就是一束以光速C运动的粒子流,这些粒子称为光量子(1926年后改称光子)。每个光子都有一定的能量,对于频率为ν的光,其光子能量为E=hυ ,h为普朗克常数,光束的能量就是这些光子能量的总和。一定频率的光,光子的数量越多,光的强度就越大。光电效应是由于金属中的自由电子吸收了光子能量而从金属中逸出而发生的。他认为光(电磁辐射)是由光量子组成,每个光量子的能量E与辐射频率υ的关系是:E=hυ。此即爱因斯坦的光量子说。16年,爱因斯坦给出的这个关系式被实验所证实。
他还根据光的动量和能量关系p=E/c=h/λ,指出光量子的动量P与辐射波长λ的关系为p=h/λ。1923年,康普顿散射实验证实了这一设想是正确的.
评价:
爱因斯坦克服了普朗克量子说的不性,把量子性从辐射的机制引伸到光的本身上,认为光本身也是不连续的,光不仅在吸收和发射时是量子化的,而且光的传播本身也是量子化的。爱因斯坦的光量子说恢复了光的粒子性,使人们终于认清了光的波粒双重性格,而且在它的启发下,发现了德布罗意物质波,使人们认清了微观世界的波粒二象性,为后来量子力学的建立奠定了基础。
利用光电效应可以把光信号转变为电信号,动作迅速灵敏,因此利用光电效应制作的光电器件在工农业生产、科学技术和文化生活领域内得到了广泛的应用.光电管就是应用最普遍的一种光电器件.
光电管的类型很多.图7-3甲是其中的一种.玻璃泡里的空气已经抽出,有的管里充有少量的惰性气体(如氩、氖、氦等).管的内半壁涂有逸出功小的碱金属作为阴极K.管内另有一阳极A.使用时照图7-3乙那样把它连在电路里,当光照射到光电管的阴极K时,阴极发射电子,电路里就产生电流.光电管不能受强光照射,否则容易老化失效.光电管产生的电流很弱,应用时可以用放大器把它放大.
光控继电器 工业生产中的大部分光电控制设备都用光控继电器.图7-4是光控继电器的示意图.它由电源、光电管、放大器、电磁继电器几部分组成。当光照射光电管时,光电管电路中便产生电流,经放大器放大后,使电磁铁M磁化,把衔铁N吸住;没有光照射光电管时,电路中没有电流,衔铁N在弹簧的作用下就自动离开M.如果把衔铁N跟控制机构相连,就可以达到自动控制的目的.
光控继电器在工业上可以用于产品的自动计数、安全生产等方面.用于自动计数时,可以把产品放在传送带上,光源和光电管分别放在传送带的两侧,每当传送带上输送过去一个产品时,光线被挡住一次,光控继电器就放开衔铁一次,由衔铁控制的计数器的数字就加一.工人在冲床、钻床、锻压机械上劳动时,如有不慎,容易出.为保证安全,可以在这些机床上安装光控继电器.当工人不慎将手伸入危险部位时,由于遮住了光线,光控继电器就立即动作,使机床停下来,避免的发生.
有声电影 最早的电影是没有声音的.后来虽然有了声音,但那是靠留声机来配合影片播放的.声和影配合不好时,效果当然不好.我们现在能够看到声和影完全配合一致的有声电影,还是多亏了光电管.
影片摄制完后,要进行录音.录音时通过专门的设备使声音的变化转变成光的变化,从而把声音的“像”摄制在影片的边缘上,形成宽窄变化的暗条纹,这就是影片边上的音道.放映电影时,利用光电管把“声音的照片”还原成声音.方法是:在电影放映机中用强度不变的极窄的光束照射音道,由于影片上各处的音道宽窄不同,所以在影片移动的过程中,通过音道的光的强度也就不断变化;变化的光射向光电管时,在电路中产生变化的电流,把电流放大后,通过喇叭就可以把声音放出来 这是光电效应的应用
简单地说就是光是有能量的,能量E=hv,其中h是普朗克常量,v是光的频率
光电效应是爱因斯坦的那篇论文?
1.太阳能电池、防盗报警器和照相机的测光表都是以光电效应为基础的。
2.核能利用了这样一个物理现象:当原子发生裂变时,总质量的微量损失可以转变成能量,其依据正是爱因斯坦的等式E=Mc2。如今,核能为英国提供了25%的电力。
3.全球定位系统之所以能将物体的位置到米,正是根据爱因斯坦的相对论对地球卫星发出的信号进行了修正。
4.狭义相对论与量子理论相结合,指出了反物质的存在。科学家们利用正电子,即反物质“电子”,通过X射线层析照相术研究大脑活动。
5.亚原子粒子的特性是相对论的直接结果,其存在可以解释从化学元素的特性到磁铁作用的多种现象。
6.爱因斯坦16至17年对光子的研究为人类40年后发现激光奠定了基础。目前激光广泛应用于从DVD到激光打印机的多种产品。
光电效应的研究历史
光电效应首先由德国物理学家海因里希·赫兹于1887年发现,对发展量子理论及提出波粒二象性的设想起到了根本性的作用。
菲利普·莱纳德用实验发现了光电效应的重要规律。
阿尔伯特·爱因斯坦则提出了正确的理论机制。
1839年,年仅十九岁的·贝克勒尔(Alexandre Becquerel),在协助父亲研究将光波照射到电解池(electrolytic cell)所产生的效应时,发现了光生伏打效应。
虽然这不是光学效应,但对于揭示物质的电性质与光波之间的密切关系有很大的作用。
威勒毕·史密斯(Willoughby Smith)于1873年在进行与水下电缆相关的一项任务,测试硒圆柱高电阻性质时,发现其具有光电导性,即照射光束于硒圆柱会促使其电导增加。
海因里希·赫兹
1887年,德国物理学者海因里希·赫兹做实验观察到光电效应、电磁波的发射与接收。
在赫兹的里有一个火花间隙(spark gap),可以借着制造火花来生成与发射电磁波。
在接收器里有一个线圈与一个火花间隙,每当线圈侦测到电磁波,火花间隙就会出现火花。
由于火花不很明亮,为了更容易观察到火花,他将整个接收器置入一个不透明的盒子内。
他注意到火花长度因此减小。
为了理清原因,他将盒子一部分一部分拆掉,发现位于接收器火花与火花之间的不透明板造成了这屏蔽现象。
若改用玻璃来分隔,也会造成这屏蔽现象,而石英则不会。
经过用石英棱镜按照波长将光波分解,仔细分析每个波长的光波所表现出的屏蔽行为,他发现是紫外线造成了光电效应。
赫兹将这些实验结果发表于《物理年鉴》,他没有对该效应做进一步的研究。
紫外线入射于火花间隙会帮助产生火花,这个发现立刻引起了物理学者们的好奇心,其中包括威廉·霍尔伐克士(Wilhelm Hallwachs)、奥古斯图·里吉(Augusto Righi)、·史托勒托夫(Aleksandr Stoletov)等等。
他们进行了一系列关于光波对于带电物体所产生效应的研究调查,特别是紫外线。
这些研究调查证实,刚刚清洁干净的锌金属表面,若带有负电荷,不论数量有多少,当被紫外线照射时,会快速地失去这负电荷;若电中性的锌金属被紫外线照射,则会很快地变为带有正电荷,而电子会逃逸到金属周围的气体中,若吹拂强风于金属,则可以大幅度增加带有的正电荷数量。
约翰·艾斯特(Johann elster)和汉斯·盖特尔(Hans Gei),首先发展出个实用的光电真空管,能够用来量度辐照度。
艾斯特和盖特尔将其用于研究光波照射到带电物体产生的效应,获得了巨大成果。
他们将各种金属依光电效应放电能力从大到小顺序排列:铷、钾、、钠、锂、镁、铊、锌。
对于铜、铂、铅、铁、镉、碳、汞,普通光波造成的光电效应很小,无法测量到任何效应。
上述金属排列顺序与亚历山德罗·伏打的电化学排列相同,越具正电性的金属给出的光电效应越大。
汤姆孙量度粒子荷质比的光电效应实验装置。
当时研究“赫兹效应”的各种实验还伴随着“光电疲劳”的现象,让研究变得更加复杂。
光电疲劳指的是从干净金属表面观察到的光电效应逐渐衰微的现象。
根据霍尔伐克士的研究结果,在这现象里,臭氧扮演了很重要的角色。
可是,其它因素,例如氧化、湿度、抛光模式等等,都必须纳入考量。
1888至18年间,史托勒托夫完成了很多关于光电效应的实验与分析。
他设计出一套实验装置,特别适合于定量分析光电效应。
借助此实验装置,他发现了辐照度与感应光电流的直接比例。
另外,史托勒托夫和里吉还共同研究了光电流与气压之间的关系,他们发现气压越低,光电流变越大,直到气压为止;低于这气压,则气压越低,光电流变越小。
约瑟夫·汤姆孙于1897年4月30日在大不列颠皇家研究院(Royal Institution of Great Britain)的演讲中表示,通过观察在克鲁克斯管里的阴极射线所造成的萤光辐照度,他发现阴极射线在空气中透射的能力远超一般原子尺寸的粒子。
因此,他主张阴极射线是由带负电荷的粒子组成,后来称为电子。
此后不久,通过观察阴极射线因电场与磁场作用而产生的偏转,他测得了阴极射线粒子的荷质比。
1899年,他用紫外线照射锌金属,又测得发射粒子的荷质比为7.3×10emu/g,与先前实验中测得的阴极射线粒子的数值7.8×10emu/g大致符合。
他因此正确推断这两种粒子是同一种粒子,即电子。
他还测出这粒子所载有的负电荷 。
从这两个数据,他成功计算出了电子的质量:大约是氢离子质量的千分之一。
电子是当时所知质量最小的粒子。
匈牙利物理学家菲利普·莱纳德
菲利普·莱纳德于1900年发现紫外线会促使气体发生电离作用。
由于这效应广泛发生于好几厘米宽区域的空气,并且制造出很多大颗的正离子与小颗的负离子,这现象很自然地被诠释为光电效应发生于在气体中的固体粒子或液体粒子,汤姆孙就是如此诠释这现象。
1902年,莱纳德又发布了几个关于光电效应的重要实验结果。
,借着变化紫外光源与阴极之间的距离,他发现,从阴极发射的光电子数量每单位时间与入射的辐照度成正比。
第二,使用不同的物质为阴极材料,可以显示出,每一种物质所发射出的光电子都有其特定的动能(速度),换句话说,光电子的动能于光波的光谱组成有关。
第三,借着调整阴极与阳极之间的电压,他观察到,光电子的动能与截止电压成正比,与辐照度无关。
由于光电子的速度与辐照度无关,莱纳德认为,光波并没有给予这些电子任何能量,这些电子本来就已拥有这能量,光波扮演的角色好似触发器,一触即发地选择与释出束缚于原子里的电子,这就是莱纳德的“触发说”(triggering hypothesis)。
在那时期,学术界广泛接受触发说为光电效应的机制。
可是,这说遭遇到一些严峻问题,例如,若电子本来在原子里就已拥有了逃逸束缚与发射之后的动能,那么,将阴极加热应该会给予更大的动能,但是物理学者做实验并没有测量到任何不同结果。
英姿焕发的爱因斯坦在1905年(爱因斯坦奇迹年)发表了六篇划时代的论文。
1905年,爱因斯坦发表论文《关于光的产生和转化的一个试探性观点》,对于光电效应给出另外一种解释。
他将光束描述为一群离散的量子,现称为光子,而不是连续性波动。
对于马克斯·普朗克先前在研究黑体辐射中所发现的普朗克关系式,爱因斯坦给出另一种诠释:频率为 的光子拥有的能量为 ;其中, 因子是普朗克常数。
爱因斯坦认为,组成光束的每一个量子所拥有的能量等于频率乘以普朗克常数。
若光子的频率大于某极限频率,则这光子拥有足够能量来使得一个电子逃逸,造成光电效应。
爱因斯坦的论述解释了为什么光电子的能量只与频率有关,而与辐照度无关。
虽然光束的辐照度很微弱,只要频率足够高,必会产生一些高能量光子来促使束缚电子逃逸。
尽管光束的辐照度很强劲,若频率低于极限频率,则仍旧无法给出任何高能量光子来促使束缚电子逃逸。
爱因斯坦的论述极具想像力与说服力,但却遭遇到学术界强烈的抗拒,这是因为它与詹姆斯·麦克斯韦所表述,而且经过严格理论检验、通过精密实验证明的光的波动理论相互矛盾,它无法解释光波的折射性与相干性,更一般而言,它与物理系统的能量“无穷可分性说”相互矛盾。
甚至在实验证实爱因斯坦的光电效应方程正确无误之后,强烈抗拒仍旧延续多年。
爱因斯坦的发现开启了的量子物理的大门,爱因斯坦因为“对理论物理学的成就,特别是光电效应定律的发现”荣获1921年诺贝尔物理学奖。
图为密立根做光电效应实验得到的能量与频率关系线。
竖轴是能够阻止能量光电子抵达阳极的截止电压,P是逸出功,PD是电势(potential difference)。
爱因斯坦的论文很快地引起美国物理学者罗伯特·密立根的注意,但他也不赞同爱因斯坦的理论。
之后十年,他花费很多时间做实验研究光电效应。
他发现,增加阴极的温度,光电子能量不会跟着增加。
他又证实光电疲劳现象是因氧化作用所产生的杂质造成,若能够将清洁干净的阴极保存于高真空内,就不会出现这种现象了。
16年,他证实了爱因斯坦的理论正确无误,并且应用光电效应直接计算出普朗克常数。
密立根因为“关于基本电荷以及光电效应的工作”获颁1923年诺贝尔物理学奖。
根据波粒二象性,光电效应也可以用波动概念来分析,完全不需用到光子概念。
威利斯·兰姆与马兰·斯考立(Marlan Scully)于1969年证明这理论。
爱因斯坦光电效应理论有哪些内容?
概述
光照射到某些物质上,引起物质的电性质发生变化,也就是光能量转换成电能。这类光致电变的现象被人们统称为光电效应(Photoelectric effect)。这一现象是1887年赫兹在实验研究麦克斯韦电磁理论时偶然发现的。1888年,德国物理学家霍尔瓦克斯(Wilhelm Hallwachs)证实是由于在放电间隙内出现荷电体的缘故。1899年,J·J·汤姆孙通过实验证实该荷电体与阴极射线一样是电子流。1899—1902年间,勒纳德(P·Lenard)对光电效应进行了系统研究,并命名为光电效应。1905年,爱因斯坦在《关于光的产生和转化的一个启发性观点》一文中,用光量子理论对光电效应进行了全面的解释。16年,美国科学家密立根通过精密的定量实验证明了爱因斯坦的理论解释,从而也证明了光量子理论。
光电效应
1905年,爱因斯坦提出光子设,成功解释了光电效应,因此获得1921年诺贝尔物理奖。 光照射到金属上,引起物质的电性质发生变化。这类光变致电的现象被人们统称为光电效应(Photoelectric effect)。 光电效应分为光电子发射、光电导效应和光生伏应。前一种现象发生在物体表面,又称外光电效应。后两种现象发生在物体内部,称为内光电效应。赫兹于1887年发现光电效应,爱因斯坦个成功的解释了光电效应(金属表面在光辐照作用下发射电子的效应,发的电子叫做光电子)。光波长小于某一临界值时方能发射电子,即极限波长,对应的光的频率叫做极限频率。临界值取决于金属材料,而发射电子的能量取决于光的波长而与光强度无关,这一点无法用光的波动性解释。还有一点与光的波动性相矛盾,即光电效应的瞬时性,按波动性理论,如果入射光较弱,照射的时间要长一些,金属中的电子才能积累住足够的能量,飞出金属表面。可事实是,只要光的频率高于金属的极限频率,光的亮度无论强弱,光子的产生都几乎是瞬时的,不超过十的负九次方秒。正确的解释是光必定是由与波长有关的严格规定的能量单位(即光子或光量子)所组成。 光电效应里,电子的射出方向不是完全定向的,只是大部分都垂直于金属表面射出,与光照方向无关 ,光是电磁波,但是光是高频震荡的正交电磁场,振幅很小,不会对电子射出方向产生影响。
光电效应分为光电子发射、光电导效应和光生伏应。前一种现象发生在物体表面,又称外光电效应。后两种现象发生在物体内部,称为内光电效应。
赫兹于1887年发现光电效应,爱因斯坦个成功的解释了光电效应。金属表面在光辐照作用下发射电子的效应,发的电子叫做光电子。光波长小于某一临界值时方能发射电子,即极限波长,对应的光的频率叫做极限频率。临界值取决于金属材料,而发射电子的能量取决于光的频率而与光强度无关,这一点无法用光的波动性解释。还有一点与光的波动性相矛盾,即光电效应的瞬时性,按波动性理论,如果入射光较弱,照射的时间要长一些,金属中的电子才能积累住足够的能量,飞出金属表面。可事实是,只要光的频率高于金属的极限频率,光的亮度无论强弱,光子的产生都几乎是瞬时的,不超过十的负九次方秒。正确的解释是光必定是由与波长有关的严格规定的能量单位(即光子或光量子)所组成。
光电效应里,电子的射出方向不是完全定向的,只是大部分都垂直于金属表面射出,与光照方向无关,光是电磁波,但是光是高频震荡的正交电磁场,振幅很小,不会对电子射出方向产生影响。
光电效应说明了光具有粒子性。相对应的,光具有波动性最典型的例子就是光的干涉和衍射。
只要光的频率超过某一极限频率,受光照射的金属表面立即就会逸出光电子,发生光电效应。当在金属外面加一个闭合电路,加上正向电源,这些逸出的光电子全部到达阳极便形成所谓的光电流。在入射光一定时,增大光电管两极的正向电压,提高光电子的动能,光电流会随之增大。但光电流不会无限增大,要受到光电子数量的约束,有一个值,这个值就是饱和电流。所以,当入射光强度增大时,根据光子设,入射光的强度(即单位时间内通过单位垂直面积的光能)决定于单位时间里通过单位垂直面积的光子数,单位时间里通过金属表面的光子数也就增多,于是,光子与金属中的电子碰撞次数也增多,因而单位时间里从金属表面逸出的光电子也增多,饱和电流也随之增大
爱因斯坦发表的五篇物理学论文是什么?
年仅26岁的技术员爱因斯坦一口气完成了五篇论文,其中四篇于当年、另一篇于次年在德文《物理学杂志》发表。这五篇论文分别是:《分子大小的新测定》《热的分子运动论所要求的静止液体中悬浮小粒子的运动》《论动体的电动力学》《物体的惯性同它所含的能量有关吗?》《关于光的产生和转化的一个试探性观点》
爱因斯坦在哪一年发表了四篇论文
爱因斯坦在1905年发表了四篇论文。
1905年,爱因斯坦在科学史上创造了一个奇迹。这一年他写了六篇论文,在三月到九月这半年中,利用在专利局每天八小时工作以外的业余时间,在三个领域做出了四个有划时代意义的贡献,他发表了关于光量子说、分子大小测定法、布朗运动理论和狭义相对论这四篇重要论文。
1921年演讲中的爱因斯坦。
这时间完全长于现今的通用时间,欧洲攻读博士学位的五年时间很长,尽管这在当时并不罕见但如今平均时间却为三年。
爱因斯坦于1902年开始在瑞士专利局工作,您会注意到这年他刚刚获得博士学位。 他之所以这样做,是因为他找不到让满意的教学岗位,所以他需要另一个收入来源来维持生计。