中学数学定理大全免费(数学定理初中)


求初中数学几何公式、定理大全

一、有关“线”的公式定理

中学数学定理大全免费(数学定理初中)中学数学定理大全免费(数学定理初中)


中学数学定理大全免费(数学定理初中)


1、过两点有且只有一条直线

2、两点之间线段最短

3、同角或等角的补角相等

4、同角或等角的余角相等

5、过一点有且只有一条直线和已知直线垂直

6、直线外一点与直线上各点连接的所有线段中,垂线段最短

7、平行公理 经过直线外一点,有且只有一条直线与这条直线平行

8、如果两条直线都和第三条直线平行,这两条直线也互相平行

二、有关“角”的公式定理

1、同位角相等,两直线平行

2、内错角相等,两直线平行

3、同旁内角互补,两直线平行

4、两直线平行,同位角相等

5、两直线平行,内错角相等

6、两直线平行,同旁内角互补

三、有关“三角形”的公式定理

1、定理 三角形两边的和大于第三边

2、推论 三角形两边的小于第三边

3、三角形内角和定理 三角形三个内角的和等于180°

4、推论1 直角三角形的两个锐角互余

5、推论2 三角形的一个外角等于和它不相邻的两个内角的和

6、推论3 三角形的一个外角大于任何一个和它不相邻的内角

7、全等三角形的对应边、对应角相等

8、边角边公理 有两边和它们的夹角对应相等的两个三角形全等

9、角边角公理 有两角和它们的夹边对应相等的两个三角形全等

10、推论 有两角和其中一角的对边对应相等的两个三角形全等

11、边边边公理 有三边对应相等的两个三角形全等

12、斜边、直角边公理 有斜边和一条直角边对应相等的两个直角三角形全等

13、定理1 在角的平分线上的点到这个角的两边的距离相等

14、定理2 到一个角的两边的距离相同的点,在这个角的平分线上

15、角的平分线是到角的两边距离相等的所有点的

四、有关“等腰三角形”的公式定理

1、等腰三角形的性质定理 等腰三角形的两个底角相等

2、推论1 等腰三角形顶角的平分线平分底边并且垂直于底边

3、等腰三角形的顶角平分线、底边上的中线和高互相重合

4、推论3 等边三角形的各角都相等,并且每一个角都等于60°

5、等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)

6、推论1 三个角都相等的三角形是等边三角形

7、推论 2 有一个角等于60°的等腰三角形是等边三角形

8、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半

9、直角三角形斜边上的中线等于斜边上的一半

10、定理 线段垂直平分线上的点和这条线段两个端点的距离相等

11、逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上

12、线段的垂直平分线可看作和线段两端点距离相等的所有点的

13、定理1 关于某条直线对称的两个图形是全等形

14、定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线

15、定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上

16、逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称

17、勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a的平方+b的平方=c的平方

18、勾股定理的逆定理 如果三角形的三边长a、b、c有关系a的平方+b的平方=c的平方,那么这个三角形是直角三角形

五、有关“四边形”的公式定理

1、定理 四边形的内角和等于360°

2、四边形的外角和等于360°

3、多边形内角和定理 n边形的内角的和等于(n-2)×180°

4、推论 任意多边的外角和等于360°

5、平行四边形性质定理1 平行四边形的对角相等

6、平行四边形性质定理2 平行四边形的对边相等

7、推论 夹在两条平行线间的平行线段相等

8、平行四边形性质定理3 平行四边形的对角线互相平分

9、平行四边形判定定理1 两组对角分别相等的四边形是平行四边形

10、平行四边形判定定理2 两组对边分别相等的四边形是平行四边形

11、平行四边形判定定理3 对角线互相平分的四边形是平行四边形

12、平行四边形判定定理4 一组对边平行相等的四边形是平行四边形

六、有关“矩形”的公式定理

1、矩形性质定理1 矩形的四个角都是直角

2、矩形性质定理2 矩形的对角线相等

3、矩形判定定理1 有三个角是直角的四边形是矩形

4、矩形判定定理2 对角线相等的平行四边形是矩形

七、有关“菱形”的公式定理

1、菱形性质定理1 菱形的四条边都相等

2、菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角

3、菱形面积=对角线乘积的一半,即S=(a×b)÷2

4、菱形判定定理1 四边都相等的四边形是菱形

5、菱形判定定理2 对角线互相垂直的平行四边形是菱形

八、有关“正方形”的公式定理

1、正方形性质定理1 正方形的四个角都是直角,四条边都相等

2、正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角

3、定理1 关于中心对称的两个图形是全等的

4、定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分

5、逆定理 如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称

九、有关“等腰梯形”的公式定理

1、等腰梯形性质定理 等腰梯形在同一底上的两个角相等

2、等腰梯形的两条对角线相等

3、等腰梯形判定定理 在同一底上的两个角相等的梯形是等腰梯形

4、对角线相等的梯形是等腰梯形

十、有关“等分”的公式定理

1、平行线等分线段定理 如果一组平行线在一条直线上截得的线段 相等,那么在其他直线上截得的线段也相等

2、推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰

3、推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边

4、三角形中位线定理 三角形的中位线平行于第三边,并且等于它的一半

5、梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的一半 L=(a+b)÷2 S=L×h

6、(1)比例的基本性质 如果a:b=c:d,那么ad=bc 如果ad=bc,那么a:b=c:d

7、(2)合比性质 如果a/b=c/d,那么(a±b)/b=(c±d)/d

8、(3)等比性质 如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b

9、平行线分线段成比例定理 三条平行线截两条直线,所得的对应线段成比例

10、推论 平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例

11、定理 如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边

12、平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例

13、定理 平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似

14、相似三角形判定定理1 两角对应相等,两三角形相似(ASA)

15、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似

16、判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)

17、判定定理3 三边对应成比例,两三角形相似(SSS)

18、定理 如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似

19、性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比

20、性质定理2 相似三角形周长的比等于相似比

21、性质定理3 相似三角形面积的比等于相似比的平方

22、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值

23、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值

十一、有关“圆”的公式定理(初中数学重难点)

1、圆是定点的距离等于定长的点的

2、圆的内部可以看作是圆心的距离小于半径的点的

3、圆的外部可以看作是圆心的距离大于半径的点的

4、同圆或等圆的半径相等

5、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆

6、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线

7、到已知角的两边距离相等的点的轨迹,是这个角的平分线

8、到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线

9、定理 不在同一直线上的三个点确定一条直线

10垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧

11、推论1 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧

②弦的垂直平分线经过圆心,并且平分弦所对的两条弧

③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧

12、推论2 圆的两条平行弦所夹的弧相等

13、圆是以圆心为对称中心的中心对称图形

14、定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等

15、推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等

16、定理 一条弧所对的圆周角等于它所对的圆心角的一半

17、推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等

18、推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径

19、推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形

20、定理 圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角

21、①直线L和⊙O相交 d<r

②直线L和⊙O相切 d=r

③直线L和⊙O相离 d>r

22、切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线

23、切线的性质定理 圆的切线垂直于经过切点的半径

24、推论1 经过圆心且垂直于切线的直线必经过切点

25、推论2 经过切点且垂直于切线的直线必经过圆心

26、切线长定理 从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角

27、圆的外切四边形的两组对边的和相等

28、弦切角定理 弦切角等于它所夹的弧对的圆周角

29、推论 如果两个弦切角所夹的弧相等,那么这两个弦切角也相等

30、相交弦定理 圆内的两条相交弦,被交点分成的两条线段长的积相等

31、推论 如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项

32、切割线定理 从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项

33、推论 从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等

34、如果两个圆相切,那么切点一定在连心线上

35、①两圆外离 d>R+r

②两圆外切 d=R+r

③两圆相交 R-r<d<R+r(R>r)

④两圆内切 d=R-r(R>r) ⑤两圆内含d<R-r(R>r)

36、定理 相交两圆的连心线垂直平分两圆的公共弦

37、定理 把圆分成n(n≥3):

⑴依次连结各分点所得的多边形是这个圆的内接正n边形

⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形

38、定理 任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆

39、正n边形的每个内角都等于(n-2)×180°/n

40、定理 正n边形的半径和边心距把正n边形分成2n个全等的直角三角形

41、正n边形的面积Sn=pnrn/2 p表示正n边形的周长

42、正三角形面积√3a/4 a表示边长

43、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4

44、弧长计算公式:L=n∏R/180

45、扇形面积公式:S扇形=nπR/360=LR/2

46、内公切线长= d-(R-r) 外公切线长= d-(R+r)

高中数学几何公理,定理。全部

公理1:如果一条直线上的两点在一个平面内,那么这条直线上的所有点都在这个平面内。

(1)判定直线在平面内的依据

(2)判定点在平面内的方法

公理2:如果两个平面有一个公共点,那它还有其它公共点,这些公共点的是一条直线

。(1)判定两个平面相交的依据

(2)判定若干个点在两个相交平面的交线上

公理3:经过不在一条直线上的三点,有且只有一个平面。

(1)确定一个平面的依据

(2)判定若干个点共面的依据

推论1:经过一条直线和这条直线外一点,有且一个平面。

(1)判定若干条直线共面的依据

(2)判断若干个平面重合的依据

(3)判断几何图形是平面图形的依据

推论2:经过两条相交直线,有且一个平面。

推论3:经过两条平行线,有且一个平面。

立体几何

直线与平面

空间

二直

线平行直线

公理4:平行于同一直线的两条直线互相平行

等角定理:如果一个角的两边和另一个角的两边分别平行,并且方向相同,那么这两个角相等。

异面直线

空间

直线

和平

面位

置关

系(1)直线在平面内——有无数个公共点

(2)直线和平面相交——有且只有一个公共点

(3)直线和平面平行——没有公共点

立体几何

直线与平面

直线与平面所成的角

(1)平面的斜线和它在平面上的射影所成的锐角,叫做这条斜线与平面所成的角

(2)一条直线垂直于平面,定义这直线与平面所成的角是直角

(3)一条直线和平面平行,或在平面内,定义它和平面所成的角是00的角

三垂线定理

在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它和这条斜线垂直

三垂线逆定理

在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它和这条斜线的射影垂直

空间两个平面

两个平面平行

判定

性质

(1)如果一个平面内有两条相交直线平行于另一个平面,那么这两个平面平行

(2)垂直于同一直线的两个平面平行

(1)两个平面平行,其中一个平面内的直线必平行于另一个平面

(2)如果两个平行平面同时和第三个平面相交,那么它们的交线平行

(3)一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面

相交的两平面

二面角:从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫二面角的线,这两个半平面叫二面角的面

二面角的平面角:以二面角的棱上任一点为端点,在两个面内分另作垂直棱的两条射线,这两条射线所成的角叫二面角的平面角

平面角是直角的二面角叫做直二面角

两平面垂直

判定

性质

如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直

(1)若二平面垂直,那么在一个平面内垂直于它们的交线的直线垂直于另一个平面

(2)如果两个平面垂直,那么经过个平面内一点垂直于第二个平面的直线,在个平面内

立体几何

多面体、棱柱、棱锥

多面体

定义

由若干个多边形所围成的几何体叫做多面体。

棱柱

斜棱柱:侧棱不垂直于底面的棱柱。

直棱柱:侧棱与底面垂直的棱柱。

正棱柱:底面是正多边形的直棱柱。

棱锥

正棱锥:如果棱锥的底面是正多边形,并且顶点在底面的射影是底面的中心,这样的棱锥叫正棱锥。

球到一定点距离等于定长或小于定长的点的。

欧拉定理

简单多面体的顶点数V,棱数E及面数F间有关系:V+F-E=2

初中数学平面几何定理

初中数学平面几何定理大全

平面几何,在初中数学中,是重点也是难点,如果同学们想要学好初中平面几何题的话,那么就要掌握好平面几何的定理,下面我就给大家介绍平面几何里面的定理有哪些?希望能够帮助到大家。

1.勾股定理(毕达哥拉斯定理)

2.射影定理(欧几里得定理)

3.三角形的三条中线交于一点,并且,各中线被这个点分成2:1的两部分

4.四边形两边中心的连线的两条对角线中心的连线交于一点

5.间隔的连接六边形的边的中心所作出的两个三角形的重心是重合的。

6.三角形各边的垂直一平分线交于一点。

7.三角形的三条高线交于一点

8.设三角形ABC的外心为O,垂心为H,从O向BC边引垂线,设垂足为L,则AH=2OL

9.三角形的外心,垂心,重心在同一条直线(欧拉线)上。

10.(九点圆或欧拉圆或费尔巴赫圆)三角形中,三边中心.从各顶点向其对边所引垂线的垂足,以及垂心与各顶点连线的中点,这九个点在同一个圆上,

11.欧拉定理:三角形的外心.重心.九点圆圆心.垂心依次位于同一直线(欧拉线)上

12.库立奇大上定理:(圆内接四边形的九点圆)

圆周上有四点,过其中任三点作三角形,这四个三角形的九点圆圆心都在同一圆周上,我们把过这四个九点圆圆心的圆叫做圆内接四边形的九点圆。

13.(内心)三角形的三条内角平分线交于一点,内切圆的半径公式:r=(s-a)(s-b)(s-c)s,s为三角形周长的一半

14.(旁心)三角形的一个内角平分线和另外两个顶点处的外角平分线交于一点

15.中线定理:(巴布斯定理)设三角形ABC的边BC的中点为P,则有AB2+AC2=2(AP2+BP2)

16.斯图尔特定理:P将三角形ABC的边BC内分成m:n,则有n×AB2+m×AC2=(m+n)AP2+mnm+nBC2

17.波罗摩及多定理:圆内接四边形ABCD的对角线互相垂直时,连接AB中点M和对角线交点E的直线垂直于CD

18.阿波罗尼斯定理:到两定点A.B的距离之比为定比m:n(值不为1)的点P,位于将线段AB分成m:n的内分点C和外分点D为直径两端点的定圆周上

19.托勒密定理:设四边形ABCD内接于圆,则有AB×CD+AD×BC=AC×BD

20.以任意三角形ABC的边BC.CA.AB为底边,分别向外作底角都是30度的等腰△BDC.△CEA.△AFB,则△DEF是正三角形,

21.爱尔可斯定理1:若△ABC和△DEF都是正三角形,则由线段AD.BE.CF的中心构成的三角形也是正三角形。

22.爱尔可斯定理2:若△ABC.△DEF.△GHI都是正三角形,则由三角形△ADG.△BEH.△CFI的重心构成的三角形是正三角形。

23.梅涅劳斯定理:设△ABC的三边BC.CA.AB或其延长线和一条不经过它们任一顶点的直线的交点分别为P.Q.R则有BPPC×CQQA×ARRB=1

24.梅涅劳斯定理的逆定理:(略)

25.梅涅劳斯定理的应用定理1:设△ABC的∠A的外角平分线交边CA于Q.∠C的平分线交边AB于R,.∠B的平分线交边CA于Q,则P.Q.R三点共线。

26.梅涅劳斯定理的应用定理2:过任意△ABC的三个顶点A.B.C作它的外接圆的切线,分别和BC.CA.AB的延长线交于点P.Q.R,则P.Q.R三点共线

27.塞瓦定理:设△ABC的三个顶点A.B.C的不在三角形的边或它们的延长线上的一点S连接面成的三条直线,分别与边BC.CA.AB或它们的延长线交于点P.Q.R,则BPPC×CQQA×ARRB()=1.

28.塞瓦定理的应用定理:设平行于△ABC的边BC的直线与两边AB.AC的交点分别是D.E,又设BE和CD交于S,则AS一定过边BC的中心M

29.塞瓦定理的逆定理:(略)

30.塞瓦定理的逆定理的应用定理1:三角形的三条中线交于一点

31.塞瓦定理的逆定理的应用定理2:设△ABC的内切圆和边BC.CA.AB分别相切于点R.S.T,则AR.BS.CT交于一点。

32.西摩松定理:从△ABC的外接圆上任意一点P向三边BC.CA.AB或其延长线作垂线,设其垂足分别是D.E.R,则D.E.R共线,(这条直线叫西摩松线)

33.西摩松定理的逆定理:(略)

34.史坦纳定理:设△ABC的垂心为H,其外接圆的任意点P,这时关于△ABC的点P的西摩松线通过线段PH的中心。

35.史坦纳定理的应用定理:△ABC的外接圆上的一点P的关于边BC.CA.AB的对称点和△ABC的垂心H同在一条(与西摩松线平行的)直线上。这条直线被叫做点P关于△ABC的镜象线。

36.波朗杰.腾下定理:设△ABC的外接圆上的三点为P.Q.R,则P.Q.R关于△ABC交于一点的充要条件是:弧AP+弧BQ+弧CR=0(mod2∏).

37.波朗杰.腾下定理推论1:设P.Q.R为△ABC的外接圆上的三点,若P.Q.R关于△ABC的西摩松线交于一点,则A.B.C三点关于△PQR的的西摩松线交于与前相同的一点

38.波朗杰.腾下定理推论2:在推论1中,三条西摩松线的交点是A.B.C.P.Q.R六点任取三点所作的三角形的垂心和其余三点所作的三角形的垂心的连线段的中点。

39.波朗杰.腾下定理推论3:考查△ABC的外接圆上的一点P的关于△ABC的西摩松线,如设QR为垂直于这条西摩松线该外接圆珠笔的弦,则三点P.Q.R的关于△ABC的西摩松线交于一点

40.波朗杰.腾下定理推论4:从△ABC的顶点向边BC.CA.AB引垂线,设垂足分别是D.E.F,且设边BC.CA.AB的中点分别是L.M.N,则D.E.F.L.M.N六点在同一个圆上,这时L.M.N点关于关于△ABC的西摩松线交于一点。

41.关于西摩松线的定理1:△ABC的外接圆的两个端点P.Q关于该三角形的西摩松线互相垂直,其交点在九点圆上。

42.关于西摩松线的定理2(安宁定理):在一个圆周上有4点,以其中任三点作三角形,再作其余一点的关于该三角形的西摩松线,这些西摩松线交于一点。

43.卡诺定理:通过△ABC的外接圆的一点P,引与△ABC的三边BC.CA.AB分别成同向的等角的直线PD.PE.PF,与三边的交点分别是D.E.F,则D.E.F三点共线。

44.奥倍尔定理:通过△ABC的三个顶点引互相平行的三条直线,设它们与△ABC的外接圆的交点分别是L.M.N,在△ABC的外接圆取一点P,则PL.PM.PN与△ABC的三边BC.CA.AB或其延长线的交点分别是D.E.F,则D.E.F三点共线

45.清宫定理:设P.Q为△ABC的外接圆的异于A.B.C的两点,P点的关于三边BC.CA.AB的对称点分别是U.V.W,这时,QU.QV.QW和边BC.CA.AB或其延长线的交点分别是D.E.F,则D.E.F三点共线

46.他拿定理:设P.Q为关于△ABC的外接圆的.一对反点,点P的关于三边BC.CA.AB的对称点分别是U.V.W,这时,如果QU.QV.QW与边BC.CA.AB或其延长线的交点分别为ED.E.F,则D.E.F三点共线。(反点:P.Q分别为圆O的半径OC和其延长线的两点,如果OC2=OQ×OP则称P.Q两点关于圆O互为反点)

47.朗古来定理:在同一圆同上有A1B1C1D14点,以其中任三点作三角形,在圆周取一点P,作P点的关于这4个三角形的西摩松线,再从P向这4条西摩松线引垂线,则四个垂足在同一条直线上。

48.九点圆定理:三角形三边的中点,三高的垂足和三个欧拉点[连结三角形各顶点与垂心所得三线段的中点]九点共圆[通常称这个圆为九点圆[nine-pointcircle],或欧拉圆,费尔巴哈圆.

49.一个圆周上有n个点,从其中任意n-1个点的重心,向该圆周的在其余一点处的切线所引的垂线都交于一点。

50.康托尔定理1:一个圆周上有n个点,从其中任意n-2个点的重心向余下两点的连线所引的垂线共点。

51.康托尔定理2:一个圆周上有A.B.C.D四点及M.N两点,则M和N点关于四个三角形△BCD.△CDA.△DAB.△ABC中的每一个的两条西摩松的交点在同一直线上。这条直线叫做M.N两点关于四边形ABCD的康托尔线。

52.康托尔定理3:一个圆周上有A.B.C.D四点及M.N.L三点,则M.N两点的关于四边形ABCD的康托尔线.L.N两点的关于四边形ABCD的康托尔线.M.L两点的关于四边形ABCD的康托尔线交于一点。这个点叫做M.N.L三点关于四边形ABCD的康托尔点。

53.康托尔定理4:一个圆周上有A.B.C.D.E五点及M.N.L三点,则M.N.L三点关于四边形BCDE.CDEA.DEAB.EABC中的每一个康托尔点在一条直线上。这条直线叫做M.N.L三点关于五边形A.B.C.D.E的康托尔线。

54.费尔巴赫定理:三角形的九点圆与内切圆和旁切圆相切。

55.莫利定理:将三角形的三个内角三等分,靠近某边的两条三分角线相得到一个交点,则这样的三个交点可以构成一个正三角形。这个三角形常被称作莫利正三角形。

56.牛顿定理1:四边形两条对边的延长线的交点所连线段的中点和两条对角线的中点,三条共线。这条直线叫做这个四边形的牛顿线。

57.牛顿定理2:圆外切四边形的两条对角线的中点,及该圆的圆心,三点共线。

58.笛沙格定理1:平面上有两个三角形△ABC.△DEF,设它们的对应顶点(A和D.B和E.C和F)的连线交于一点,这时如果对应边或其延长线相交,则这三个交点共线。

59.笛沙格定理2:相异平面上有两个三角形△ABC.△DEF,设它们的对应顶点(A和D.B和E.C和F)的连线交于一点,这时如果对应边或其延长线相交,则这三个交点共线。

60.布利安松定理:连结外切于圆的六边形ABCDEF相对的顶点A和D.B和E.C和F,则这三线共点。

60.巴斯加定理:圆内接六边形ABCDEF相对的边AB和DE.BC和EF.CD和FA的(或延长线的)交点共线。

;

初中数学公式定理

126 切线长定理 从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一

点的连线平分两条切线的夹角

127 圆的外切四边形的两组对边的和相等

128 弦切角定理 弦切角等于它所夹的弧对的圆周角

129 推论 如果两个弦切角所夹的弧相等,那么这两个弦切角也相等

130 相交弦定理 圆内的两条相交弦,被交点分成的两条线段长的积相等

131 推论 如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的

比例中项

132 切割线定理 从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点

的两条线段长的比例中项

133 推论 从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线

段长的积相等

134 如果两个圆相切,那么切点一定在连心线上

135 ①两圆外离 d>R+r ②两圆外切 d=R+r

③两圆相交 R-r<d<R+r(R>r)

④两圆内切 d=R-r(R>r) ⑤两圆内含d<R-r(R>r)

136 定理 相交两圆的连心线垂直平分两圆的公共弦

137 定理 把圆分成n(n≥3):

⑴依次连结各分点所得的多边形是这个圆的内接正n边形

⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外

切正n边形

138 定理 任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆

139 正n边形的每个内角都等于(n-2)×180°/n

140 定理 正n边形的半径和边心距把正n边形分成2n个全等的直角三角形

141 正n边形的面积Sn=pnrn/2 p表示正n边形的周长

142 正三角形面积√3a/4 a表示边长

143 如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,

因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4

144 弧长计算公式:L=n兀R/180

145 扇形面积公式:S扇形=n兀R^2/360=LR/2

146 内公切线长= d-(R-r) 外公切线长= d-(R+r)

乘法与因式分解 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2)

a3-b3=(a-b)(a2+ab+b2)

三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b

|a-b|≥|a|-|b| -|a|≤a≤|a|

一元二次方程的解 -b+√(b2-4ac)/2a, -b-√(b2-4ac)/2a

根与系数的关系 X1+X2=-b/a X1X2=c/a 注:韦达定理

判别式

b2-4ac=0 注:方程有两个相等的实根

b2-4ac>0 注:方程有两个不等的实根

b2-4ac<0 注:方程没有实根,有共轭复数根

三角函数公式

两角和公式

sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA

cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB

tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)

ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)

倍角公式

tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga

cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a

半角公式

sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)

cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)

tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))

ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))

和化积

2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)

2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)

sinA+sinB=2sin((A+B)/2)cos((A-B)/2

cosA+cosB=2cos((A+B)/2)sin((A-B)/2)

tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB

ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB

某些数列前n项和

1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2

2+4+6+8+10+12+14+…+(2n)=n(n+1) 13+23+33+43+53+63+…n3=n2(n+1)2/4

12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6

12+23+34+45+56+67+…+n(n+1)=n(n+1)(n+2)/3

正弦定理 a/sinA=b/sinB=c/sinC=2R 注:其中R表示三角形的外接圆半径

余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角

圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标

圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0

抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py

直棱柱侧面积 S=ch 斜棱柱侧面积 S=c'h

正棱锥侧面积 S=1/2ch' 正棱台侧面积 S=1/2(c+c')h'

圆台侧面积 S=1/2(c+c')l=pi(R+r)l 球的表面积 S=4pir2

圆柱侧面积 S=ch=2pih 圆锥侧面积 S=1/2cl=pirl

弧长公式 l=ar a是圆心角的弧度数r >0 扇形面积公式 s=1/2lr

锥体体积公式 V=1/3SH 圆锥体体积公式 V=1/3pir2h

斜棱柱体积 V=S'L 注:其中,S'是直截面面积, L是侧棱长

柱体体积公式 V=sh 圆柱体 V=pir2h 赞同

2| 评论(1)

检举 | 2011-11-15 21:08 轻舞的—叛逆 | 二级

常见的初中数学公式

1 过两点有且只有一条直线

2 两点之间线段最短

3 同角或等角的补角相等

4 同角或等角的余角相等

5 过一点有且只有一条直线和已知直线垂直

6 直线外一点与直线上各点连接的所有线段中,垂线段最短

7 平行公理 经过直线外一点,有且只有一条直线与这条直线平行

8 如果两条直线都和第三条直线平行,这两条直线也互相平行

9 同位角相等,两直线平行

10 内错角相等,两直线平行

11 同旁内角互补,两直线平行

12两直线平行,同位角相等

13 两直线平行,内错角相等

14 两直线平行,同旁内角互补

15 定理 三角形两边的和大于第三边

16 推论 三角形两边的小于第三边

17 三角形内角和定理 三角形三个内角的和等于180°

18 推论1 直角三角形的两个锐角互余

19 推论2 三角形的一个外角等于和它不相邻的两个内角的和

20 推论3 三角形的一个外角大于任何一个和它不相邻的内角

21 全等三角形的对应边、对应角相等

22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等

23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等

24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等

25 边边边公理(SSS) 有三边对应相等的两个三角形全等

26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等

27 定理1 在角的平分线上的点到这个角的两边的距离相等

28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上

29 角的平分线是到角的两边距离相等的所有点的

30 等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角)

31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边

32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合

33 推论3 等边三角形的各角都相等,并且每一个角都等于60°

34 等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)

35 推论1 三个角都相等的三角形是等边三角形

36 推论 2 有一个角等于60°的等腰三角形是等边三角形

37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半

38 直角三角形斜边上的中线等于斜边上的一半

39 定理 线段垂直平分线上的点和这条线段两个端点的距离相等

40 逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上

41 线段的垂直平分线可看作和线段两端点距离相等的所有点的

42 定理1 关于某条直线对称的两个图形是全等形

43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线

44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上

45逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称

46勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2

47勾股定理的逆定理 如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形

48定理 四边形的内角和等于360°

49四边形的外角和等于360°

50多边形内角和定理 n边形的内角的和等于(n-2)×180°

51推论 任意多边的外角和等于360°

52平行四边形性质定理1 平行四边形的对角相等

53平行四边形性质定理2 平行四边形的对边相等

54推论 夹在两条平行线间的平行线段相等

55平行四边形性质定理3 平行四边形的对角线互相平分

56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形

57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形

58平行四边形判定定理3 对角线互相平分的四边形是平行四边形

59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形

60矩形性质定理1 矩形的四个角都是直角

61矩形性质定理2 矩形的对角线相等

62矩形判定定理1 有三个角是直角的四边形是矩形

63矩形判定定理2 对角线相等的平行四边形是矩形

64菱形性质定理1 菱形的四条边都相等

65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角

66菱形面积=对角线乘积的一半,即S=(a×b)÷2

67菱形判定定理1 四边都相等的四边形是菱形

68菱形判定定理2 对角线互相垂直的平行四边形是菱形

69正方形性质定理1 正方形的四个角都是直角,四条边都相等

70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角

71定理1 关于中心对称的两个图形是全等的

72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分

73逆定理 如果两个图形的对应点连线都经过某一点,并且被这一

点平分,那么这两个图形关于这一点对称

74等腰梯形性质定理 等腰梯形在同一底上的两个角相等

75等腰梯形的两条对角线相等

76等腰梯形判定定理 在同一底上的两个角相等的梯形是等腰梯形

77对角线相等的梯形是等腰梯形

78平行线等分线段定理 如果一组平行线在一条直线上截得的线段

相等,那么在其他直线上截得的线段也相等

79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰

80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第

三边

81 三角形中位线定理 三角形的中位线平行于第三边,并且等于它

的一半

82 梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的

一半 L=(a+b)÷2 S=L×h

83 (1)比例的基本性质 如果a:b=c:d,那么ad=bc

如果ad=bc,那么a:b=c:d

84 (2)合比性质 如果a/b=c/d,那么(a±b)/b=(c±d)/d

85 (3)等比性质 如果a/b=c/d=…=m/n(b+d+…+n≠0),那么

(a+c+…+m)/(b+d+…+n)=a/b

86 平行线分线段成比例定理 三条平行线截两条直线,所得的对应

线段成比例

87 推论 平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例

88 定理 如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边

89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例

90 定理 平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似

相似三角形判定定理1 两角对应相等,两三角形相似(ASA)

92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似

93 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)

94 判定定理3 三边对应成比例,两三角形相似(SSS)

95 定理 如果一个直角三角形的斜边和一条直角边与另一个直角三

角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似

96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平

分线的比都等于相似比

97 性质定理2 相似三角形周长的比等于相似比

98 性质定理3 相似三角形面积的比等于相似比的平方

99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等

于它的余角的正弦值

100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等

于它的余角的正切值

101圆是定点的距离等于定长的点的

102圆的内部可以看作是圆心的距离小于半径的点的

103圆的外部可以看作是圆心的距离大于半径的点的

104同圆或等圆的半径相等

105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半

径的圆

106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直

平分线

107到已知角的两边距离相等的点的轨迹,是这个角的平分线

108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距

离相等的一条直线

109定理 不在同一直线上的三点确定一个圆。

110垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧

111推论1 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧

②弦的垂直平分线经过圆心,并且平分弦所对的两条弧

③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧

112推论2 圆的两条平行弦所夹的弧相等

113圆是以圆心为对称中心的中心对称图形

114定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦

相等,所对的弦的弦心距相等

115推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两

弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等

116定理 一条弧所对的圆周角等于它所对的圆心角的一半

117推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等

118推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所

对的弦是直径

119推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形

120定理 圆的内接四边形的对角互补,并且任何一个外角都等于它

的内对角

121①直线L和⊙O相交 d<r

②直线L和⊙O相切 d=r

③直线L和⊙O相离 d>r

122切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线

123切线的性质定理 圆的切线垂直于经过切点的半径

124推论1 经过圆心且垂直于切线的直线必经过切点

125推论2 经过切点且垂直于切线的直线必经过圆心

126切线长定理 从圆外一点引圆的两条切线,它们的切线长相等,

圆心和这一点的连线平分两条切线的夹角

127圆的外切四边形的两组对边的和相等

128弦切角定理 弦切角等于它所夹的弧对的圆周角

129推论 如果两个弦切角所夹的弧相等,那么这两个弦切角也相等

130相交弦定理 圆内的两条相交弦,被交点分成的两条线段长的积

相等

131推论 如果弦与直径垂直相交,那么弦的一半是它分直径所成的

两条线段的比例中项

132切割线定理 从圆外一点引圆的切线和割线,切线长是这点到割

线与圆交点的两条线段长的比例中项

133推论 从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等

134如果两个圆相切,那么切点一定在连心线上

135①两圆外离 d>R+r ②两圆外切 d=R+r

③两圆相交 R-r<d<R+r(R>r)

④两圆内切 d=R-r(R>r) ⑤两圆内含d<R-r(R>r)

136定理 相交两圆的连心线垂直平分两圆的公共弦

137定理 把圆分成n(n≥3):

⑴依次连结各分点所得的多边形是这个圆的内接正n边形

⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形

138定理 任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆

139正n边形的每个内角都等于(n-2)×180°/n

140定理 正n边形的半径和边心距把正n边形分成2n个全等的直角三角形

141正n边形的面积Sn=pnrn/2 p表示正n边形的周长

142正三角形面积√3a/4 a表示边长

143如果在一个顶点周围有k个正n边形的角,由于这些角的和应为

360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4

144弧长计算公式:L=n兀R/180

145扇形面积公式:S扇形=n兀R^2/360=LR/2

146内公切线长= d-(R-r) 外公切线长= d-(R+r)

(还有一些,大家帮补充吧)

实用工具:常用数学公式

公式分类 公式表达式

乘法与因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)

三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b

|a-b|≥|a|-|b| -|a|≤a≤|a|

一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a

根与系数的关系 X1+X2=-b/a X1X2=c/a 注:韦达定理

判别式

b2-4ac=0 注:方程有两个相等的实根

b2-4ac>0 注:方程有两个不等的实根

b2-4ac<0 注:方程没有实根,有共轭复数根

三角函数公式

两角和公式

sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA

cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB

tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)

ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)

倍角公式

tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga

cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a

半角公式

sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)

cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)

tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))

ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))

和化积

2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)

2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)

sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)

tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB

ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB

某些数列前n项和

1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2

2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6

13+23+33+43+53+63+…n3=n2(n+1)2/4 12+23+34+45+56+67+…+n(n+1)=n(n+1)(n+2)/3

正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圆半径

余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角

圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标

圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0

抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py

直棱柱侧面积 S=ch 斜棱柱侧面积 S=c'h

正棱锥侧面积 S=1/2ch' 正棱台侧面积 S=1/2(c+c')h'

圆台侧面积 S=1/2(c+c')l=pi(R+r)l 球的表面积 S=4pir2

圆柱侧面积 S=ch=2pih 圆锥侧面积 S=1/2cl=pirl

弧长公式 l=ar a是圆心角的弧度数r >0 扇形面积公式 s=1/2lr

锥体体积公式 V=1/3SH 圆锥体体积公式 V=1/3pir2h

斜棱柱体积 V=S'L 注:其中,S'是直截面面积, L是侧棱长

柱体体积公式 V=sh 圆柱体 V=pir2h

常见的初中数学公式

1 过两点有且只有一条直线

2 两点之间线段最短

3 同角或等角的补角相等

4 同角或等角的余角相等

5 过一点有且只有一条直线和已知直线垂直

6 直线外一点与直线上各点连接的所有线段中,垂线段最短

7 平行公理 经过直线外一点,有且只有一条直线与这条直线平行

8 如果两条直线都和第三条直线平行,这两条直线也互相平行

9 同位角相等,两直线平行

10 内错角相等,两直线平行

11 同旁内角互补,两直线平行

12两直线平行,同位角相等

13 两直线平行,内错角相等

14 两直线平行,同旁内角互补

15 定理 三角形两边的和大于第三边

16 推论 三角形两边的小于第三边

17 三角形内角和定理 三角形三个内角的和等于180°

18 推论1 直角三角形的两个锐角互余

19 推论2 三角形的一个外角等于和它不相邻的两个内角的和

20 推论3 三角形的一个外角大于任何一个和它不相邻的内角

21 全等三角形的对应边、对应角相等

22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等

23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等

24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等

25 边边边公理(SSS) 有三边对应相等的两个三角形全等

26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等

27 定理1 在角的平分线上的点到这个角的两边的距离相等

28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上

29 角的平分线是到角的两边距离相等的所有点的

30 等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角)

31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边

32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合

33 推论3 等边三角形的各角都相等,并且每一个角都等于60°

34 等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)

35 推论1 三个角都相等的三角形是等边三角形

36 推论 2 有一个角等于60°的等腰三角形是等边三角形

37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半

38 直角三角形斜边上的中线等于斜边上的一半

39 定理 线段垂直平分线上的点和这条线段两个端点的距离相等

40 逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上

41 线段的垂直平分线可看作和线段两端点距离相等的所有点的

42 定理1 关于某条直线对称的两个图形是全等形

43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线

44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上

45逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称

46勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2

47勾股定理的逆定理 如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形

48定理 四边形的内角和等于360°

49四边形的外角和等于360°

50多边形内角和定理 n边形的内角的和等于(n-2)×180°

51推论 任意多边的外角和等于360°

52平行四边形性质定理1 平行四边形的对角相等

53平行四边形性质定理2 平行四边形的对边相等

54推论 夹在两条平行线间的平行线段相等

55平行四边形性质定理3 平行四边形的对角线互相平分

56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形

57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形

58平行四边形判定定理3 对角线互相平分的四边形是平行四边形

59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形

60矩形性质定理1 矩形的四个角都是直角

61矩形性质定理2 矩形的对角线相等

62矩形判定定理1 有三个角是直角的四边形是矩形

63矩形判定定理2 对角线相等的平行四边形是矩形

64菱形性质定理1 菱形的四条边都相等

65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角

66菱形面积=对角线乘积的一半,即S=(a×b)÷2

67菱形判定定理1 四边都相等的四边形是菱形

68菱形判定定理2 对角线互相垂直的平行四边形是菱形

69正方形性质定理1 正方形的四个角都是直角,四条边都相等

70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角

71定理1 关于中心对称的两个图形是全等的

72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分

73逆定理 如果两个图形的对应点连线都经过某一点,并且被这一

点平分,那么这两个图形关于这一点对称

74等腰梯形性质定理 等腰梯形在同一底上的两个角相等

75等腰梯形的两条对角线相等

76等腰梯形判定定理 在同一底上的两个角相等的梯形是等腰梯形

77对角线相等的梯形是等腰梯形

78平行线等分线段定理 如果一组平行线在一条直线上截得的线段

相等,那么在其他直线上截得的线段也相等

79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰

80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第

三边

81 三角形中位线定理 三角形的中位线平行于第三边,并且等于它

的一半

82 梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的

一半 L=(a+b)÷2 S=L×h

83 (1)比例的基本性质 如果a:b=c:d,那么ad=bc

如果ad=bc,那么a:b=c:d

84 (2)合比性质 如果a/b=c/d,那么(a±b)/b=(c±d)/d

85 (3)等比性质 如果a/b=c/d=…=m/n(b+d+…+n≠0),那么

(a+c+…+m)/(b+d+…+n)=a/b

86 平行线分线段成比例定理 三条平行线截两条直线,所得的对应

线段成比例

87 推论 平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例

88 定理 如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边

89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例

90 定理 平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似

相似三角形判定定理1 两角对应相等,两三角形相似(ASA)

92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似

93 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)

94 判定定理3 三边对应成比例,两三角形相似(SSS)

95 定理 如果一个直角三角形的斜边和一条直角边与另一个直角三

角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似

96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平

分线的比都等于相似比

97 性质定理2 相似三角形周长的比等于相似比

98 性质定理3 相似三角形面积的比等于相似比的平方

99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等

于它的余角的正弦值

100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等

于它的余角的正切值

101圆是定点的距离等于定长的点的

102圆的内部可以看作是圆心的距离小于半径的点的

103圆的外部可以看作是圆心的距离大于半径的点的

104同圆或等圆的半径相等

105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半

径的圆

106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直

平分线

107到已知角的两边距离相等的点的轨迹,是这个角的平分线

108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距

离相等的一条直线

109定理 不在同一直线上的三点确定一个圆。

110垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧

111推论1 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧

②弦的垂直平分线经过圆心,并且平分弦所对的两条弧

③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧

112推论2 圆的两条平行弦所夹的弧相等

113圆是以圆心为对称中心的中心对称图形

114定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦

相等,所对的弦的弦心距相等

115推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两

弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等

116定理 一条弧所对的圆周角等于它所对的圆心角的一半

117推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等

118推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所

对的弦是直径

119推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形

120定理 圆的内接四边形的对角互补,并且任何一个外角都等于它

的内对角

121①直线L和⊙O相交 d<r

②直线L和⊙O相切 d=r

③直线L和⊙O相离 d>r

122切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线

123切线的性质定理 圆的切线垂直于经过切点的半径

124推论1 经过圆心且垂直于切线的直线必经过切点

125推论2 经过切点且垂直于切线的直线必经过圆心

126切线长定理 从圆外一点引圆的两条切线,它们的切线长相等,

圆心和这一点的连线平分两条切线的夹角

127圆的外切四边形的两组对边的和相等

128弦切角定理 弦切角等于它所夹的弧对的圆周角

129推论 如果两个弦切角所夹的弧相等,那么这两个弦切角也相等

130相交弦定理 圆内的两条相交弦,被交点分成的两条线段长的积

相等

131推论 如果弦与直径垂直相交,那么弦的一半是它分直径所成的

两条线段的比例中项

132切割线定理 从圆外一点引圆的切线和割线,切线长是这点到割

线与圆交点的两条线段长的比例中项

133推论 从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等

134如果两个圆相切,那么切点一定在连心线上

135①两圆外离 d>R+r ②两圆外切 d=R+r

③两圆相交 R-r<d<R+r(R>r)

④两圆内切 d=R-r(R>r) ⑤两圆内含d<R-r(R>r)

136定理 相交两圆的连心线垂直平分两圆的公共弦

137定理 把圆分成n(n≥3):

⑴依次连结各分点所得的多边形是这个圆的内接正n边形

⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形

138定理 任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆

139正n边形的每个内角都等于(n-2)×180°/n

140定理 正n边形的半径和边心距把正n边形分成2n个全等的直角三角形

141正n边形的面积Sn=pnrn/2 p表示正n边形的周长

142正三角形面积√3a/4 a表示边长

143如果在一个顶点周围有k个正n边形的角,由于这些角的和应为

360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4

144弧长计算公式:L=n兀R/180

145扇形面积公式:S扇形=n兀R^2/360=LR/2

146内公切线长= d-(R-r) 外公切线长= d-(R+r)

(还有一些,大家帮补充吧)

实用工具:常用数学公式

公式分类 公式表达式

乘法与因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)

三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b

|a-b|≥|a|-|b| -|a|≤a≤|a|

一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a

根与系数的关系 X1+X2=-b/a X1X2=c/a 注:韦达定理

判别式

b2-4ac=0 注:方程有两个相等的实根

b2-4ac>0 注:方程有两个不等的实根

b2-4ac<0 注:方程没有实根,有共轭复数根

三角函数公式

两角和公式

sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA

cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB

tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)

ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)

倍角公式

tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga

cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a

半角公式

sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)

cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)

tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))

ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))

和化积

2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)

2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)

sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)

tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB

ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB

某些数列前n项和

1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2

2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6

13+23+33+43+53+63+…n3=n2(n+1)2/4 12+23+34+45+56+67+…+n(n+1)=n(n+1)(n+2)/3

正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圆半径

余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角

圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标

圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0

抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py

直棱柱侧面积 S=ch 斜棱柱侧面积 S=c'h

正棱锥侧面积 S=1/2ch' 正棱台侧面积 S=1/2(c+c')h'

圆台侧面积 S=1/2(c+c')l=pi(R+r)l 球的表面积 S=4pir2

圆柱侧面积 S=ch=2pih 圆锥侧面积 S=1/2cl=pirl

弧长公式 l=ar a是圆心角的弧度数r >0 扇形面积公式 s=1/2lr

锥体体积公式 V=1/3SH 圆锥体体积公式 V=1/3pir2h

斜棱柱体积 V=S'L 注:其中,S'是直截面面积, L是侧棱长

柱体体积公式 V=sh 圆柱体 V=pir2h

定理1 在角的平分线上的点到这个角的两边的距离相等

定理2 到一个角的两边的距离相同的点,在这个角的平分线上

定理 线段垂直平分线上的点和这条线段两个端点的距离相等

定理1 关于某条直线对称的两个图形是全等形

定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线

定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上

逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称

定理 四边形的内角和等于360°

平行四边形性质定理1 平行四边形的对角相等

平行四边形性质定理2 平行四边形的对边相等

推论 夹在两条平行线间的平行线段相等

平行四边形性质定理3 平行四边形的对角线互相平分

平行四边形判定定理1 两组对角分别相等的四边形是平行四边形

平行四边形判定定理2 两组对边分别相等的四边形是平行四边形

平行四边形判定定理3 对角线互相平分的四边形是平行四边形

平行四边形判定定理4 一组对边平行相等的四边形是平行四边形

矩形性质定理1 矩形的四个角都是直角

矩形性质定理2 矩形的对角线相等

矩形判定定理1 有三个角是直角的四边形是矩形

菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角

菱形面积=对角线乘积的一半,即S=(a×b)÷2

菱形判定定理1 四边都相等的四边形是菱形

菱形判定定理2 对角线互相垂直的平行四边形是菱形

正方形性质定理1 正方形的四个角都是直角,四条边都相等

正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角

定理1 关于中心对称的两个图形是全等的

定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分

逆定理 如果两个图形的对应点连线都经过某一点,并且被这一

1、 每份数×份数=总数 总数÷每份数=份数总数÷份数=每份数

2、 1倍数×倍数=几倍数 几倍数÷1倍数=倍数几倍数÷倍数=1倍数

3、 速度×时间=路程 路程÷速度=时间 路程÷时间=速度

4、 单价×数量=总价 总价÷单价=数量 总价÷数量=单价

5、 工作效率×工作时间=工作总量 工作总量÷工作效率=工作时间工作总量÷

工作时间=工作效率

6、 加数+加数=和 和-一个加数=另一个加数

7、 被减数-减数= 被减数-=减数 +减数=被减数

8、 因数×因数=积 积÷一个因数=另一个因数

9、 被除数÷除数=商 被除数÷商=除数 商×除数=被除数

三角形面积S=1/2Sin(∠a)AB

注意∠a是边A与边B的夹角

(Sin(∠a))是三角涵数

S=√[p(p-a)(p-b)(p-c)]

而公式里的p为半周长:

p=(a+b+c)/2

三角形面积S=1/2Sin(∠a)AB

注意∠a是边A与边B的夹角

(Sin(∠a))是三角涵数

S=√[p(p-a)(p-b)(p-c)]

而公式里的p为半周长:

p=(a+b+c)/2

初中数学定理有哪些?

初中所有被删除的数学定理是鸡爪定理,角平分线定理,圆幂定理,正弦定理,相交弦定理,切割线定理,割线定理,蝴蝶定理,托勒密定理,余弦定理等。

删减某些知识,无疑对同学们学习知识的全面性造成一定的影响。就射影定理而言,在很多题目中使用就可以省时省力,现在绝大多数中学还是将此作为一个知识来给学生拓展,并没有受到巨大的影响,如果绝迹,那在无疑给几何减少了魅力。

初中数学定理:

1、点、线、角

点的定理:过两点有且只有一条直线。

点的定理:两点之间线段最短。

角的定理:同角或等角的补角相等。

角的定理:同角或等角的余角相等。

直线定理:过一点有且只有一条直线和已知直线垂直。

直线定理:直线外一点与直线上各点连接的所有线段中,垂线段最短。

2、三角形内角定理

定理:三角形两边的和大于第三边。

推论:三角形两边的小于第三边。

三角形内角和定理:三角形三个内角的和等于180°。

3、几何平行

平行定理:经过直线外一点,有且只有一条直线与这条直线平行。

推论:如果两条直线都和第三条直线平行,这两条直线也互相平行。

证明两直线平行定理:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行。

两直线平行推论:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补。

初中十大数学定理

初中十大数学定理如下:

1、线段公理:两点之间,线段最短。

2、直线公理:过两点有且只有一条直线。

3、平行公理:过直线外一点有且只有一条直线与已知直线平行。

是否承认这条公理是欧式几何与非欧几何的区分标准;我们所学的初中数学都是属于欧式几何的范畴。

4、直线外一点与直线上各点连接的所有线段中,垂线段最短。

5、垂直性质:经过直线外或直线上一点,有且只有一条直线与已知直线垂直。

6、两直线被第三条直线所截,如果同位角相等,那么这两条直线平行。

7、两条平行线被第三条直线所截,同位角相等。

8、两边及其夹角对应相等的两个三角形全等。(SAS)。

9、三边对应相等的两个三角形全等。(SSS)。

10、全等三角形的对应边相等,对应角相等。

数学:

亚里士多德把数学定义为“数量科学”,这个定义直到18世纪。从19世纪开始,数学研究越来越严格,开始涉及与数量和量度无明确关系的群论和投影几何等抽象主题,数学家和哲学家开始提出各种新的定义。

这些定义中的一些强调了大量数学的演绎性质,一些强调了它的抽象性,一些强调数学中的某些话题。即使在专业人士中,对数学的定义也没有达成共识。数学是否是艺术或科学,甚至没有一致意见。许多专业数学家对数学的定义不感兴趣,或者认为它是不可定义的。有些只是说,“数学是数学家做的。”

福建二本学校名单_2021年福建二本院校有哪些
上一篇
王者荣耀狄仁杰大招无限连 狄仁杰无限二
下一篇
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 836084111@qq.com ,一经查实,本站将立刻删除。

相关推荐