三角函数公式、定理有哪些。
三角函数主要公式、定理:
三角函数公式定理大全_三角函数公式常用公式
三角函数公式定理大全_三角函数公式常用公式
1、两角和公式:
sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
2、倍角公式:
tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
3、半角公式:
sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))
ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))
4、和化积:
2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB
ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB
5、正弦定理: a/sinA=b/sinB=c/sinC=2R (注: 其中 R 表示三角形的外接圆半径) 。
6、余弦定理: b^2=a^2+c^2-2accosB (注:角B是边a和边c的夹角)某些数列前n项和。
三角函数定理
tanα
·cotα=1
sinα
·cscα=1
cosα
·secα=1
sinα/cosα=tanα=secα/cscα
cosα/sinα=cotα=cscα/secα
sin2α+cos2α=1
1+tan2α=sec2α
1+cot2α=csc2α
诱导公式
sin(-α)=-sinα
cos(-α)=cosα
tan(-α)=-tanα
cot(-α)=-cotα
sin(π/2-α)=cosα
cos(π/2-α)=sinα
tan(π/2-α)=cotα
cot(π/2-α)=tanα
sin(π/2+α)=cosα
cos(π/2+α)=-sinα
tan(π/2+α)=-cotα
cot(π/2+α)=-tanα
sin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
cot(π-α)=-cotα
sin(π+α)=-sinα
cos(π+α)=-cosα
tan(π+α)=tanα
cot(π+α)=cotα
sin(3π/2-α)=-cosα
cos(3π/2-α)=-sinα
tan(3π/2-α)=cotα
cot(3π/2-α)=tanα
sin(3π/2+α)=-cosα
cos(3π/2+α)=sinα
tan(3π/2+α)=-cotα
cot(3π/2+α)=-tanα
sin(2π-α)=-sinα
cos(2π-α)=cosα
tan(2π-α)=-tanα
cot(2π-α)=-cotα
sin(2kπ+α)=sinα
cos(2kπ+α)=cosα
tan(2kπ+α)=tanα
cot(2kπ+α)=cotα
(其中k∈Z)
两角和与的三角函数公式
公式
sin(α+β)=sinαcosβ+cosαsinβ
sin(α-β)=sinαcosβ-cosαsinβ
cos(α+β)=cosαcosβ-sinαsinβ
cos(α-β)=cosαcosβ+sinαsinβ
tanα+tanβ
tan(α+β)=——————
1-tanα
·tanβ
tanα-tanβ
tan(α-β)=——————
1+tanα
·tanβ
2tan(α/2)
sinα=——————
1+tan2(α/2)
1-tan2(α/2)
cosα=——————
1+tan2(α/2)
2tan(α/2)
tanα=——————
1-tan2(α/2)
半角的正弦、余弦和正切公式
三角函数
的降幂公式
二倍角的正弦、余弦和正切公式
三倍角的正弦、余弦和正切公式
sin2α=2sinαcosα
cos2α=cos2α-sin2α=2cos2α-1=1-2sin2α
2tanα
tan2α=—————
1-tan2α
sin3α=3sinα-4sin3α
cos3α=4cos3α-3cosα
3tanα-tan3α
tan3α=——————
1-3tan2α
三角函数的和化积公式
三角函数的积化和公式
α+β
α-β
sinα+sinβ=2sin—--·cos—-—
22
α+β
α-β
sinα-sinβ=2cos—--·sin—-—
22
α+β
α-β
cosα+cosβ=2cos—--·cos—-—
22
α+β
α-β
cosα-cosβ=-2sin—--·sin—-—
22
1sinα
·cosβ=-[sin(α+β)+sin(α-β)]
21
cosα
·sinβ=-[sin(α+β)-sin(α-β)]
21
cosα
·cosβ=-[cos(α+β)+cos(α-β)]
21
sinα
·sinβ=-
-[cos(α+β)-cos(α-β)]
2
三角函数有哪些公式和定理
诱导公式:sin(2kπ+α)=sinα .cos(2kπ+α)=cosα.tan(2kπ+α)=tanα .
sin(π+α)=-sinα .cos(π+α)=-cosα .tan(π+α)=tanα.
sin(-α)=-sinα .cos(-α)=cosα .tan(-α)=-tanα.
sin(π-α)=sinα .cos(π-α)=-cosα.tan(π-α)=-tanα.
sin(2π-α)=-sinα .cos(2π-α)=cosα .tan(2π-α)=-tanα .
sin(π/2+α)=cosα .cos(π/2+α)=-sinα.
sin(π/2-α)=cosα .cos(π/2-α)=sinα .
sin(3π/2+α)=-cosα.cos(3π/2+α)=sinα .
sin(3π/2-α)=-cosα.cos(3π/2-α)=-sinα .
基本关系:sin^2(A)+cos^2(A)=1.tanA=sinA/cosA.
三角恒等变换公式:sin(A+B)=sinAcosB+cosAsinB
sin(A-B)=sinAcosB-cosAsinB
cos(A+B)=cosAcosB-sinAsinB
cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB)
tan(A-B)=(tanA-tanB)/(1+tanAtanB)
sin2A=2sinAcosA
cos2A=cos^2(A)-sin^2(A)
tan2A=(2tanA)/(1-tan^2(A))
正弦定理:若a、b、c为任意三角形ABC三边,A、B、C为三个角,则:a/sinA=b/sinB=c/sinC
余弦定理:如上所设,则a^2=b^2+c^2-2bccosA
b^2=a^2+c^2-2accosB
c^2=a^2+b^2-2abcosC
概括地说就是任意一边的平方等于其他两边的平方和减去其余两边和它们夹角余弦的乘积.
至于积化和公式以及和化积公式课本中都删掉了,不作介绍.以上就是中学阶段要掌握的三角函数最重要的内容,纯手打,无谢谢.