七年级上册数学有理数教学视频 七年级数学有理数教学视频人教版


数学有理数计算方法

中考数学的复习,需要同学们多花时间去做试题。以下是我为大家搜集整理提供到的中考数学有理数计算 方法 ,希望对您有所帮助。欢迎阅读参考学习!

七年级上册数学有理数教学视频 七年级数学有理数教学视频人教版七年级上册数学有理数教学视频 七年级数学有理数教学视频人教版


七年级上册数学有理数教学视频 七年级数学有理数教学视频人教版


有理数计算方法

【考点】有理数计算【难度】★★★★☆

在数1,2,3,4……1998,前添符号“+”或“-”,并依次运算,所得可能的最小非负数是多少?(6分)

【解析】

最小的非负数为“0”,但是1998个正数中有999个奇数,999个偶数,他们的和或者结果必为奇数,因此不可能实现“0”

可以实现的最小非负数为“1”,如果能实现结果“1”,则符合题意

相邻两数为1,所以相邻四个数可以和为零,即n-(n+1)-(n+2)+n+3=0

从3,4,5,6……1998共有1996个数,可以四个连续数字一组,和为零

【】

-1+2+3-4-5+6+7……+1995-1996-1997+1998=1

【改编】

在数1,2,3,4……n,前添符号“+”或“-”,并依次运算,所得可能的最小非负数是多少?

【解析】

由上面解析可知,四个数连续数一组可以实现为零

如果n=4k,结果为0;(四数一组,无剩余)

如果n=4k+1,结果为1;(四数一组,剩余首项1)

如果n=4k+2,结果为1;(四数一组,剩余首两项-1+2=1)

如果n=4k+3,结果为0;(四数一组,剩余首三项1+2-3=0)

四、【考点】化简【难度】★★★★☆

【101中学期中】

将1,2,3,…,100这100个自然数,任意分成50组,每组两个数,现将每组中的两个数记为a,b,代入中进行计算,求出结果,可得到50个值,则这50个值的和的最小值为____

【解析】

化简得:当a≥b时,原式=b;当a

所以50组可得50个最小的已知自然数,即1,2,3,4……50

【】1275

【改编】

这50个值的和的值为____

【解析】

因为本质为取小运算,所以100必须和99一组,98必须和97一组,留下的50组结果为:1,3,5,7……99=0

相关 文章 :

1. 初一数学有理数知识点

2. 七年级数学上有理数教学设计

3. 七年级数学计算题100道

4. 七年级上册数学有理数检测题

5. 数学课《有理数减法法则》反思

初一数学上册章有理数知识点大全

以下是 为大家整理的关于初一数学上册章有理数知识点大全的文章,供大家学习参考!

一、知识要点

本章的主要内容可以概括为有理数的概念与有理数的运算两部分。有理数的概念可以利用数轴来认识、理解,同时,利用数轴又可以把这些概念串在一起。有理数的运算是全章的重点。在具体运算时,要注意四个方面,一是运算法则,二是运算律,三是运算顺序,四是近似计算。

基础知识:

1、正数(itionnumber):大于0的数叫做正数。

2、负数(negationnumber):在正数前面加上负号"-"的数叫做负数。

3、0既不是正数也不是负数。

4、有理数(rationalnumber):正整数、负整数、0、正分数、负分数都可以写成分数的形式,这样的数称为有理数。

5、数轴(numberaxis):通常,用一条直线上的点表示数,这条直线叫做数轴。

数轴满足以下要求:

(1)在直线上任取一个点表示数0,这个点叫做原点(origin);

(2)通常规定直线上从原点向右(或上)为正方向,从原点向左(或下)为负方向;

(3)选取适当的长度为单位长度。

6、相反数(opitenumber):相等,只有负号不同的两个数叫做互为相反数。

7、(absolutevalue)一般地,数轴上表示数a的点与原点的距离叫做数a的。记做|a|。由的定义可得:|a-b|表示数轴上a点到b点的距离。一个正数的是它本身;一个负数的是它的相反数;0的是0.正数大于0,0大于负数,正数大于负数;两个负数,大的反而小。

8、有理数加法法则

(1)同号两数相加,取相同的符号,并把相加。

(2)不相等的异号两数相加,取较大的加数的符号,并用较大的减去较小的。互为相反数的两个数相加得0.

(3)一个数同0相加,仍得这个数。

加法交换律:有理数的加法中,两个数相加,交换加数的位置,和不变。表达式:a+b=b+a。

加法结合律:有理数的加法中,三个数相加,先把前两个数相加或者先把后两个数相加,和不变。

表达式:(a+b)+c=a+(b+c)

9、有理数减法法则:减去一个数,等于加这个数的相反数。表达式:a-b=a+(-b)

10、有理数乘法法则

两数相乘,同号得正,异号得负,并把相乘。

任何数同0相乘,都得0.

乘法交换律:一般地,有理数乘法中,两个数相乘,交换因数的位置,积相等。表达式:ab=ba

乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。表达式:(ab)c=a(bc)

乘法分配律:一般地,一个数同两个的和相乘,等于把这个数分别同这两个数相乘,再把积相加。

表达式:a(b+c)=ab+ac

11、倒数

1除以一个数(零除外)的商,叫做这个数的倒数。如果两个数互为倒数,那么这两个数的积等于1。

12、有理数除法法则:两数相除,同号得负,异号得正,并把相除。0除以任何一个不等于0的数,都得0.

13、有理数的乘方:求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂(power)。an中,a叫做底数(basenumber),n叫做指数(exponent)。

根据有理数的乘法法则可以得出:负数的奇次幂是负数,负数的偶次幂是正数。正数的任何次幂都是正数,0的任何正整数次幂都是0。

14、有理数的混合运算顺序

(1)"先乘方,再乘除,加减"的顺序进行;

(2)同级运算,从左到右进行;

(3)如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。

15、科学技术法:把一个大于10的数表示成a﹡10n的形式(其中a是整数数位只有一位的数(即0

16、近似数(approximatenumber):

17、有理数可以写成m/n(m、n是整数,n≠0)的形式。另一方面,形如m/n(m、n是整数,n≠0)的数都是有理数。所以有理数可以用m/n(m、n是整数,n≠0)表示。

拓展知识:

1、数集:把一些数放在一起,就组成一个数的,简称数集。

(1)所有有理数组成的数集叫做有理数集;

(2)所有的整数组成的数集叫做整数集。

2、任何有理数都可以用数轴上的一个点来表示,体现了数形结合的数学思想。

3、根据的几何意义知道:|a|≥0,即对任何有理数a,它的是非负数。

4、比较两个有理数大小的方法有:

(1)根据有理数在数轴上对应的点的位置直接比较;

(2)根据规定进行比较:两个正数;正数与零;负数与零;正数与负数;两个负数,体现了分类讨论的数学思想;

(3)做法:a-b>0——a>b;

(4)做商法:a/b>1,b>0——a>b.

七年级数学《有理数的乘方》教案设计

有理数的乘法是继有理数的加减法之后的又一种基本运算。有理数乘法既是有理数运算的深入,又是进一步学习有理数的除法、乘方的基础,对后续代数学习是至关重要的。接下来是我为大家整理的 七年级数学 《有理数的乘方》教案设计,希望大家喜欢!

七年级数学《有理数的乘方》教案设计一

教学目标:

1.通过现实背景理解有理数乘方的意义,能进行有理数乘方的运算.

2.已知一个数,会求出它的正整数指数幂,渗透转化思想.

3.培养学生观察、归纳能力,以及思考问题、解决问题的能力,切实提高学生的运算能力.

教学重点:正确理解乘方的意义,能利用乘方运算法则进行有理数乘方运算.

教学难点:准确理解底数、指数和幂三个概念,并能进行求幂的运算.

教学过程设计:

(一)创设情境,导入新课

提问并学生回答:在小学里我们学过一个数的平方和立方是如何定义的?怎样表示?

a·a记作a2,读作a的平方(或a的2次方),即a2=a·a;a·a·a记作a3,读作a的立方(或a的3次方),即a3=a·a·a.(分别是边长为a的正方形的面积与棱长为a的正方体的体积)

(多媒体演示细胞分裂过程)某种细胞,每过30分钟便由1个分裂成2个,经过5小时,这种细胞由1个分裂成多少个?

1个细胞30分钟分裂成2个,1个小时后分裂成2×2个,1.5小时后分裂成2×2×2个,…,5小时后要分裂10次,分裂成个,为了简便可将记作210.

(二)合作交流,解读探究

一般地,n个相同的因数a相乘,即,记作an,读作a的n次方.

求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂.在an中,a叫做底数,n叫做指数,当an看作a的n次方的结果时,也可读作a的n次幂.

说明:(1)举例94来说明概念及读法.

(2)一个数可以看作这个数本身的一次方,通常省略指数1不写.

(3)因为an就是n个a相乘,所以可以利用有理数的乘法运算来进行有理数的乘方运算.

(4)乘方是一种运算,幂是乘方运算的结果.

(三)应用迁移,巩固提高

【例1】(1)(-4)3;(2)(-2)4;(3)-24.

点拨:(1)计算时仍然是要先确定符号,再确定.

(2)注意(-2)4与-24的区别.

根据有理数的乘法法则得出有理数乘方的符号规律:

负数的奇次幂是负数,负数的偶次幂是正数;

正数的任何次幂都是正数,0的任何正整数次幂都是0.

【例2】计算:

(1)()3;(2)(-)3;

(3)(-)4; (4)-;

(5)-22×(-3)2; (6)-22+(-3)2.

(四) 总结 反思 ,拓展升华

1.学生作知识小结:理解有理数乘方的意义,运用有理数乘方运算法则进行有理数乘方的运算,熟知底数、指数和幂三个基本概念.

2.教师扩展:有理数的乘方就是几个相同因数积的运算,可以运用有理数乘 方法 则进行符号的确定和幂的求值.

乘方的含义:(1)表示一种运算;(2)表示运算的结果.乘方的读法:(1)当an表示运算时,读作a的n次方;(2)当an表示运算结果时,读作a的n次幂.

乘方的符号法则:(1)正数的任何次幂都是正数;(2)零的任何正整数次幂都是零;(3)负数的偶次幂是正数,奇次幂是负数.注意(-a)n与-an及()n与的区别和联系.

(五)课堂跟踪反馈

1.课本P42练习第1、2题.

2.补充练习

(1)在(-2)6中,指数为,底数为.?

(2)在-26中,指数为,底数为.?

(3)若a2=16,则a=.?

(4)平方等于本身的数是,立方等于本身的数是.?

(5)下列说法中正确的是()

A.平方得9的数是3

B.平方得-9的数是-3

C.一个数的平方只能是正数

D.一个数的平方不能是负数

(6)下列各组数中,不相等的是()

A.(-3)2与-32 B.(-3)2与32

C.(-2)3与-23 D.|2|3与|-23|

(7)下列各式中计算不正确的是()

A.(-1)2003=-1

B.-12002=1

C.(-1)2n=1(n为正整数)

D.(-1)2n+1=-1(n为正整数)

(8)下列各数表示正数的是()

A.|a+1| B.(a-1)2

C.-(-a) D.||

第2课时有理数的混合运算

教学目标:

1.了解有理数混合运算的意义,掌握有理数的混合运算法则及运算顺序.

2.能够熟练地进行有理数的加、减、乘、除、乘方的运算,并在运算过程中合理使用运算律.

教学重点:根据有理数的混合运算顺序,正确地进行有理数的混合运算.

教学难点:有理数的混合运算.

教学过程:

一、有理数的混合运算顺序:

1.先乘方,再乘除,加减.

2.同级运算,从左到右进行.

3.如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行.

【例1】计算:

(1)(-2)3+(-3)×[(-4)2+2]-(-3)2÷(-2);

(2)1-×[3×(-)2-(-1)4]+÷(-)3.

强调:按有理数混合运算的顺序进行运算,在每一步运算中,仍然是要先确定结果的符号,再确定结果的.

【例2】观察下面三行数:

-2,4,-8,16,-32,64,…;①

0,6,-6,18,-30,66,…;②

-1,2,-4,8,-16,32,….③

(1)第①行数按什么规律排列?

(2)第②③行数与第①行数分别有什么关系?

(3)取每行数的第10个数,计算这三个数的和.

【例3】已知a=-,b=4,求()2--(ab)3+a3b的值.

二、课堂练习

1.计算:

(1)|-|2+(-1)101-×(0.5-)÷;

(2)1÷(1)×(-)÷(-12);

(3)(-2)3+3×(-1)2-(-1)4;

(4)[2-(-)3]-(-)+(-)×(-1)2;

(5)5÷[-(2-2)]×6.

2.若|x+2|+(y-3)2=0,求的值.

3.已知A=a+a2+a3+…+a2004,若a=1,则A等于多少?若a=-1,则A等于多少?

三、课时小结

1.注意有理数的混合运算顺序,要熟练进行有理数混合运算.

七年级数学《有理数的乘方》教案设计二

【教学目标】

(1)正确理解乘方、幂、指数、底数等概念.

(2)会进行有理数乘方的运算.

(3)培养探索精神,体验小组交流、合作学习的重要性.

【 教学方法 】

讲授法、讨论法。

【教学重点】

正确理解乘方的意义,掌握乘方运算法则.

【教学难点】

正确理解乘方、底数、指数的概念,并合理运算.

【课前准备】

教师准备教学用课件,学生预习。

【教学过程】

【新课讲授】

边长为a的正方形的面积是a·a,棱长为a的正方体的体积是a·a·a.

a·a简记作a2,读作a的平方(或二次方).

a·a·a简记 作a3,读作a的立方(或三次方).

一般地,几个相同的因数a相乘,记作an.即a·a……a. 这种求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂.

在an中,a叫底数,n 叫做指数,当an看作a的n次方的结果时,也可以读作a的n次 幂.

例如,在94中,底数是9,指数 是4,94读作9的 4次方,或9的4次幂,它表示4个9相乘,即9×9×9×;又如(-2)4的底数是-2,指数是4,读作-2的4次方(或-2的4次幂),它表示(-2)×(-2)×(-2)×(-2).

思考:32与23有什么不同?(-2)3与-23的意义是否相同?其中结果是否一样?(-2)4与-24呢?( )2与 呢?

(-2)3的底数是-2,指数是3,读作-2的3次幂,表示(-2)×(-2)×(-2),结果是-8;-23的底数是2,指数是3,读作2的3次幂的相反数,表示为-( 2×2×2),结果是-8.

(-2)3与 -23的意义不相同,其结果一样.

(-2)4的底数是-2,指数是4,读作-2的四次幂,表示

(-2)×(-2)×(-2)×(-2),

结果是16;-24的底数是2,指数是4,读作2的4次幂的相反数,表示为

-(2×2×2×2),其结果为-16.

(-2)4与-24的意义不同,其结果也不同.

( )2的底数是 ,指数是2,读作 的二次幂,表示 × ,结果是 ; 表示32与5的商,即 ,结果是 .

因此,当底数是负数或分数时,一定要用括号把底数括起来.

一个数可以看作这个数本身的一次方,例如5就是51,指数1通常省略不写.

因为an就是n个a相乘,所以可以利用有理数的乘方运算来进行有理数的乘方运算.

例1:计算:

(1)(-4)3; (2)(-2)4; (3)(- )5;

(4)33; (5)24; (6)(- )2.

解:(1)(-4)3=(-4)×(-4)×(-4)=-64

(2)(-2)4=(-2)×(-2)×(-2)×(-2)=16

(3)(- )5=(- )×(- )×( - )×(- )×(- )=-

七年级数学《有理数的乘方》教案设计三

一、教学目标:

1、认知目标

正确理解乘方、幂、指数、底数等概念,在现实背景中理解有理数乘方的意义,会进行有理数乘方的运算。

2、能力目标

(1). 通过对乘方意义的理解,培养学生观察、比较、分析、归纳、概括的能力,渗透转化的数学思想。

(2).使学生能够灵活地进行乘方运算。

3、情感目标

让学生体会数学与生活的密切联系,培养学生灵活处理现实问题的能力。

二、教学重难点和关键:

1、教学重点:正确理解乘方的意义,掌握乘方运算法则。

2、教学难点:正确理解乘方、底数、指数的概念,并合理运算,

3、教学关键:弄清底数、指数、幂等概念,区分-an与(-a)n的意义。

三、教学方法

考虑到七年级学生的认知水平和结构以及思维活动特点,本节课采用多媒体直观教学法,联想比较、发现教学法,设疑思考法,逐步渗透法和师生交流相结合的方法。

四、教学过程:

1、创设情境,导入新课:

这一章我们主要学习了有理数的计算,其实有理数的计算在生活中无处不在。有一种游戏叫“算24点”,它是一种常见的扑克牌游戏,不知道大家有没有玩过?那我们现在约定扑克牌中黑色数字为正,红色数字为负,每次抽取4张,用加、减、乘、除四种运算使结果为24。

师:如我现在抽取的是黑3 红3 黑4 红5 (幻灯片放映)如何算24?

师:如果四张都是3呢?

生答: -3 - 3×3×(-3)=

师:现在老师把扑克牌拿掉一张红3,变成2个黑3 ,1个红3,大家有办法凑成24吗?

生:思考几分钟后,有同学会想出 的

师:观察这个式子,有我们以前学过的3次方运算,那它是不是乘法运算?可以告诉大家,它是一种乘方运算,那是不是所有的乘方运算都是乘法运算,它与乘法运算又有怎样的关系?那我们今天就一起来研究“有理数的乘方”,相信学过之后,对你解决心中的疑问会有很大的帮助。(自然引入新课)

2、动手实践,共同探索乘方的定义

学生活动:请同学们拿出一张纸进行对折,再对折

问题:(1)对折一次有几层? 2

(2)对折二次有几层?

(3)对折三次有几层?

(4)对折四次有几层?

师:一直对折下去,你会发现什么?

生:每一次都是前面的2倍。

师:请同学们猜想:对折20次有几层?怎样去列式?

生:20个2相乘

师:写起来很麻烦,既浪费时间又浪费空间,有没有简单记法?

简记: ……

师:请同学们总结 对折n次有几层?可以简记为什么?

2×2×2×2……×2

SHAPE MERGEFORMAT

n个2

生:可简记为:

师:猜想: 生:

师:怎样读呢? 生:读作 的 次方

老师总结:求 个相同因数的积的运算叫乘方;乘方运算的结果叫幂;(教师解说乘方的特殊性),在 中, 叫做底数(相同

的因数), 叫做指数(相同因数的个数)。

注意:乘方是一种运算,幂是乘方运算的结果.看作是的次方的结果时,也可读作的次幂.

七年级数学《有理数的乘方》教案设计四

一、教学目标

1.能理解并掌握有理数乘方的概念及意义,并能够正确进行有理数的乘方运算;

2.通过观察、猜想、实践等数学活动,学生从中提高观察、类比、归纳和计算的能力。

3.初步了解并体会转化的数学思想,逐步养成观察并发现规律的意识,在相互启发中体验合作学习,树立团队意识.

二、教学重难点?

有理数乘方的概念及意义,并正确进行有理数乘方的运算

有理数乘方的概念及意义,并正确进行有理数乘方的运算

三、教学策略

本节课采用“启发、动手作、分析讲解”的教学方式,亲身经历将实际问题抽象成数学模型并进行解释和运用的过程.在教学中注意发现问题、思考问题,寻找解决问题的方法.鼓励自主探索、逐步递进.积极参与讨论、合作学习,肯定成绩,激发学习兴趣和积极性

四、教学过程

教学进程 教学内容 学生活动 设计意图 引入新知 问题一:

把一张纸对折2次可裁成4张,即2×2张;对折3次可裁成8张,即2×2×2张.

问:若对折10次可裁成几张?请用一个算式表示(不用算出结果).若对折100次,算式中有几个2相乘?

显然,我们遇到了麻烦:如何书写100个、1000个相同因数相乘这样繁琐的式子呢?我们有必要创设一种新的表示方法来表示这样的运算.

问题二:

边长为a的正方形的面积为 ;

棱长为a的正方体的体积为 ;

学生动手作,

观察纸片,发现规律

回忆小学已学知识并完成

目的是培养学生的观察及归纳能力

让学生亲历每个因数都相同时的乘法,书写起来的冗长,所以才需要创造一种简单的形式

学习新知

2个a相加可记为:a+a=2a

3个a相加可记为:a+a+a=3a

4个a相加可记为:a+a+a+a=4a

n个a相加可记为:a+a+a+……+a=na

类比可得:

2个a相乘可记为: EMBED Unknown

3个a相乘可记为: EMBED Unknown

4个a相乘可记为什么呢?

n个a相乘又记为什么呢?

定义:一般地,我们把几个相同的因数相乘的运算叫做乘方,乘方的结果叫做幂. 如果有n个a相乘,可以写成 ,也就是 EMBED Unknown

其中 叫做 的n次方,也叫做 的n次幂. 叫做幂的底数 可以取任何有理数;n叫做幂的指数,可以取任何正整数.

特殊地, 可以看作 的一次幂,也就是说 的指数是1.

例如: 读作-2的4次方或-2的4次幂;底数是-2,指数是4;表示4个-2相乘. x看作幂的话,指数为1,底数为x.

注意:当底数是负数或分数时,写成乘方形式时,必须加上括号.

在学生理解有理数的乘方的意义的情况下,提供例1,指导学生完成,巩固概念的理解.

例1.填空:

(1) EMBED Unknown 的底数是_____,指数是_____, 它表示______;

(2) 的底数是______,指数是______, 它表示______;

(3) 的底数是______,指数是______, 它表示_______;

例2.计算:

教师

学生口答

学生边记录,边体会、理解

正确表达有理数的乘方

学生口答

分析例题并板书,巩固幂的意义,写出体现幂的意义的全过程

体会类比的数学思想

七年级数学《有理数的乘方》教案设计相关 文章 :

1. 初一数学有理数的乘方教学反思

2. 初一数学有理数的乘方教学视频

3. 初一上册数学《有理数的乘方》练习试题

4. 《有理数的乘法》初一数学教学设计

5. 初一数学有理数的乘方练习题及

6. 七年级数学学习视频:有理数的乘方

7. 初一数学教程视频:有理数的乘方

8. 初一数学《有理数的加减法》教学设计

9. 七年级数学上册有理数的乘方检测题1

10. 新人教版七年级数学下册教案全册

七年级数学有理数的加法教案

有理数的加法与小学的加法大有不同,小学的加法不涉及到符号的问题,下面我为你整理了七年级数学有理数的加法教案,希望对你有帮助。

七年级有理数的加法教案

一.教学目标

1.知识与技能

(1)通过足球赛中的净胜球数,使学生掌握有理数加法法则,并能运用法则进行计算;

(2)在有理数加法法则的教学过程中,注意培养学生的运算能力.

2.数学思考

通过观察,比较,归纳等得出有理数加法法则。

3.解决问题

能运用有理数加法法则解决实际问题。

4.情感与态度

认识到通过师生合作交流,学生主动叁与探索获得数学知识,从而提高学生学习数学的积极性。

5.重点

会用有理数加法法则进行运算.

6.难点

异号两数相加的法则.

二.教材分析

“有理数的加法”是人教版七年级数学上册章有理数的第三节内容,本节内容安排四个课时,本课时是本节内容的课时,本课设计主要是通过球赛中净胜球数的实例来明确有理数加法的意义,引入有理数加法的法则,为今后学习“有理数的减法”做铺垫。

三.学校与学生情况分析

冲坡中学是乐东县利国镇的一所完全中学,学生都来自农村,学生的基础及学习习惯是比较。学生对新的课堂教学方法不是很适应;不过,在新的教学理念的指导下,旧的教学方法和学习方法逐步淡化,而是培养学生的观察,比较,归纳及自主探索和合作交流能力。现在,班级中已初步形成合作交流和勇于探究的良好学风,学生间互相评价和师生互动的课堂气氛已逐步形成。

四.教学过程

(一)问题与情境

我们已经熟悉正数的运算,然而实际问题中做加法运算的数有可能超出正数范围。例如,足球循环赛中,通常把进球数记为正数,失球数记为负数,它们的和叫作净胜球数。章前言中,红队进4个球,失2个球;蓝队进1个球,失1个球。于是红队的净胜球为

4+(-2),

黄队的净胜球为

1+(-1)。

这里用到正数与负数的加法。

(二)、师生共同探究有理数加法法则

前面我们学习了有关有理数的一些基础知识,从今天起开始学习有理数的运算.这节课我们来研究两个有理数的加法.

两个有理数相加,有多少种不同的情形?

为此,我们来看一个大家熟悉的实际问题:

足球比赛中赢球个数与输球个数是相反意义的量.若我们规定赢球为“正”,输球为“负”,打平为“0”.比如,赢3球记为+3,输1球记为-1.学校足球队在一场比赛中的胜负可能有以下各种不同的情形:

(1)上半场赢了3球,下半场赢了1球,那么全场共赢了4球.也就是

(+3)+(+1)=+4.

(2)上半场输了2球,下半场输了1球,那么全场共输了3球.也就是

(-2)+(-1)=-3.

现在,请同学们说出其他可能的情形.

答:上半场赢了3球,下半场输了2球,全场赢了1球,也就是

(+3)+(-2)=+1;

上半场输了3球,下半场赢了2球,全场输了1球,也就是

(-3)+(+2)=-1;

上半场赢了3球下半场不输不赢,全场仍赢3球,也就是

(+3)+0=+3;

上半场输了2球,下半场两队都没有进球,全场仍输2球,也就是

(-2)+0=-2;

上半场打平,下半场也打平,全场仍是平局,也就是

0+0=0.

上面我们列出了两个有理数相加的7种不同情形,并根据它们的具体意义得出了它们相加的和.但是,要计算两个有理数相加所得的和,我们总不能一直用这种方法.现在请同学们仔细观察比较这7个算式,你能从中发现有理数加法的运算法则吗?也就是结果的符号怎么定?怎么算?

这里,先让学生思考,师生交流,再由学生自己归纳出有理数加法法则:

1.同号两数相加,取相同的符号,并把相加;

2.不相等的异号两数相加,取较大的加数符号,并用较大的减去较小的,互为相反数的两个数相加得0;

3.一个数同0相加,仍得这个数.

(三)、应用举例 变式练习

例1 口答下列算式的结果

(1)(+4)+(+3); (2)(-4)+(-3); (3)(+4)+(-3); (4)(+3)+(-4);

(5)(+4)+(-4); (6)(-3)+0; (7)0+(+2); (8)0+0.

学生逐题口答后,师生共同得出

进行有理数加法,先要判断两个加数是同号还是异号,有一个加数是否为零;再根据两个加数符号的具体情况,选用某一条加法法则.进行计算时,通常应该先确定“和”的符号,再计算“和”的.

例2(教科书的例1)

解:(1)(-3)+(-9) (两个加数同号,用加法法则的第2条计算)

=-(3+9) (和取负号,把相加)

=-12.

(2)(-4.7)+3.9 (两个加数异号,用加法法则的第2条计算)

=-(4.7-3.9) (和取负号,把大的减去小的)

=-0.8

例3(教科书的例2)教师在算出红队的净胜球数后,学生自己算黄队和蓝队的净胜球数

下面请同学们计算下列各题以及教科书第23页练习第1与第2题

(1)(-0.9)+(+1.5); (2)(+2.7)+(-3); (3)(-1.1)+(-2.9);

学生书面练习,四位学生板演,教师巡视指导,学生交流,师生评价。

(四)、小结

1.本节课你学到了什么?

2.本节课你有什么感受?(由学生自己小结)

(五)练习设计

1.计算:

(1)(-10)+(+6); (2)(+12)+(-4); (3)(-5)+(-7); (4)(+6)+(+9);

(5)67+(-73); (6)(-84)+(-59); (7)33+48; (8)(-56)+37.

2.计算:

(1)(-0.9)+(-2.7); (2)3.8+(-8.4); (3)(-0.5)+3;

(4)3.29+1.78; (5)7+(-3.04); (6)(-2.9)+(-0.31);

(7)(-9.18)+6.18; (8)4.23+(-6.77); (9)(-0.78)+0.

4.用“>”或“<”号填空:

(1)如果a>0,b>0,那么a+b ______0;

(2)如果a<0,b<0,那么a+b ______0;

(3)如果a>0,b<0,|a|>|b|,那么a+b ______0;

(4)如果a<0,b>0,|a|>|b|,那么a+b ______0.

七年级数学有理数的加法教学反思

一、问题的引入:在问题的引入上。新课标规定应从实际情景入手,并且使学生能够对问题产生强烈的求知欲。我采用了敌军对我军进行小规模军事侦察的问题,使学生处在一个指挥官的角色。对问题提出解决的办法,并且在对学生提出的各种情况,作出实际的作,使学生明白数学在解决实际问题中的应用。我感觉在问题的引入上问题过于简单,使学生思考的范围过于局限。没有出现比较热烈的学习气氛。所以问题的引入应加大深度,应具有一定的挑战性。

二、问题的探索:在问题的探索上,我采用了一个小人在坐标轴上来回行走,产生一种动态效果,使学生在充满好奇心的状态下,在老师提供的情景下,在具有较多的时间和空间的条件下,亲身参加探索发现,主动的获取知识和技能。但在整个的实施过程中出现了一些问题,比如:在法则的得出上学生的总结出现了一些问题,我再处理时由于怕时间不够充裕所以学生出现的问题我给作出了解答,其实这里应由学生自己来解决,这样对学生能力的提高非常有帮助。

数学七年级上册 有理数,整式的难题。包括讲解。。给几个

整数和分数的统称。正整数和正分数合称为正有理数,负整数和负分数合称为负有理数。因而有理数集的数可分为正有理数、负有理数和零3种数。由于任何一个整数或分数都可以化为十进循环小数,反之,每一个十进循环小数也能化为整数或分数,因此,有理数也可以定义为十进循环小数。有理数集是整数集的扩张。在有理数集内,加法、减法、乘法、除法(除数不为零)4种运算通行无阻。有理数的大小顺序的规定:如果a-b是正有理数,就称a大于b或b小于a,记作a>b或b

若关于x的方程x-(x-m)/2=(3-x)/4的解是非负数,求m的取值范围。

解:x-(x-m)/2=(3-x)/4

方程左右两边乘以4得:

4x-2x+2m=3-x

则3x=3-2m

X=(3-2m)/3

因为解为非负数

则有(3-2m)/3>=0

则3-2m>=0

2m<=3

则m<3/2

已知xm=4

x-m=0

求2m+(3-x)-(4x+6m)

解:因为xm=4

x-m=0

所以x=-2

m=-2

所以

2m+3-x-4x-6m

化简的结果是-4m+3-5x

8+3+10=21

建设边疆的电视剧(建设边疆电视剧在线观看)
上一篇
王者荣耀超级排位连胜 王者荣耀超级排位
下一篇
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 836084111@qq.com ,一经查实,本站将立刻删除。

相关推荐